MOGA 4WD: multi-objective genetic algorithm for four-wheel drive electrical vehicle torque distribution in challenging conditions

MOGA 4WD: algoritmo genético multi-objetivo para distribuição de torque em veículos elétricos com tração em quatro rodas e em condições desafiadoras

Authors

  • Diego Gabriel Gomes Rosa
  • Marco Aurélio Pacheco
  • Marco Antonio Meggiolaro
  • Luiz Fernando Martha

DOI:

https://doi.org/10.34117/bjdv9n1-196

Keywords:

multi-objective genetic algorithms, torque distribution, stability control, rough terrain navigation

Abstract

This article aims to present a strategy for multi-objective optimization based on torque distribution for electrical 4WD (four-wheel drive) vehicles. By considering applications on uneven terrain, common to the navigation of tractors, off-road vehicles, or even mobile robots, an algorithm is developed having as input the vehicle attitude and output the controlled torque on each actuated wheel. The main criterion adopted is to guarantee the execution of a stable trajectory. And, to avoid wheel slippage, which occurs when low torques are applied, as well as vehicle rollover, which can occur in the presence of high torques, it is necessary to use two objective functions. To find the Pareto optimal solutions, the simplified dynamic model of a vehicle is adopted, considering a quasi-static motion. For each vehicle, its electrical, mechanical, and geometric characteristics can be used as formulation constraints. From an optimization performed offline, and adopting a polynomial approximation-based approach for real-time application, simulations and experiments show an interesting behavior: solutions that go beyond allowing the ascent of simple ramps or the overcoming of smooth obstacles are found - it is possible, for example, to climb ramps with high slopes, taking the vehicle to the limit between stability and instability.

References

Dai, H.; Chen, P.; Yang, H. Driving Torque Distribution Strategy of Skid-Steering Vehicles with Knowledge-Assisted Reinforcement Learning. Appl. Sci. 2022, 12, 5171. https://doi.org/10.3390/app12105171.

R. Siegwart, P. Lamon, T. Estier, M. Lauria and R. Piguet, "Innovative design for wheeled locomotion in rough terrain", Robotics and Autonomous Systems, vol. 40, no. 2-3, pp. 151-162, 2002.

M. Hutter, C. Gehring, A.Lauber, F. Gunther, C. D. Bellicoso, V. Tsounis, P. Frankhauser, R. Diethelm, S. Bachmann, M. Kolvenbach, M. Bjelonic, L. Isler and K. Meyer, “Anymal - toward legged robots for harsh environment”, Advanced Robotics, vol. 31, Issue 17, pp.918-931, September 2017.

N. G. Tsagarakis, D. G. Caldwell, F. Negrello, W. Choi, L. Baccelliere, V. G. Loc, J. Noorden, L. Muratore, A. Margan, A. Cardellino, L. Natale, E. Mingo Hoffman, H. Dallali, N. Kashiri, J. Malzahn, J. Lee, P. Kryczka, D. Kanoulas, M. Garabini, M. Catalano, M. Ferrati, V. Varricho, L. Pallottino, C. Pavan, A. Bicchi, A. Settimi, A. Rocchi and A. Ajoudani, “WALK-MAN: a high-performance humanoid platform for realistic environments”, Journal of Field Robotics, vol. 34, Issue 7, pp. 1225-1259, June 2017.

G. Huskic, S. Buck and A. Zell, “Path following control of skid-steered mobile robots at higher speeds on different terrain types”, 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 3734-3739. doi: 10.1109/ICRA.2017.7989430.

G. Williams, P. Drews, B. Goldfain, J. M. Rehg and E. A. Theodorou, “Aggressive driving with model predictive path integral control”, 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 1433-1440. doi: 10.1109/ICRA.2016.7487277.

M. Bjelonic, C. D. Bellicoso, Y. de Viragh, D. Sako, F. D. Tresoldi, F. Jenelten and M. Hutter, “Keep rollin’ – whole-body motion control and planning for wheeled quadrupedal robots, IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2116-2123, April 2019. Doi:10.1109/LRA.2019.2899750.

D. G. G. Rosa, C. L. M. Souza, M. A. Meggiolaro and L. F. Martha, “Development of a control strategy for mobile robot navigation in unknown terrain”, 25th ABCM International Congress of Mechanical Engineering, Uberlandia (Brazil), 2019.

Khosravani, S., Jalali, M., Khajepour, A., Kasaiezadeh, A., Chen, S. K., & Litkouhi, B. (2018). Application of lexicographic optimization method to integrated vehicle control systems. IEEE Transactions on Industrial Electronics, 65(12), 9677–9686. https://doi.org/10.1109/TIE.2018.2821625.

G. Huskic, S. Buck and A. Zell, “GeRoNa: generic robot navigation – a modular framework for robot navigation and control”, Journal of Intelligent and Robotic Systems, vol. 95, Issue 2, pp. 419-442, August 2019.

Reina, G., & Galati, R. (2016). Slip-based terrain estimation with a skid-steer vehicle. Http://Dx.Doi.Org/10.1080/00423114.2016.1203961, 54(10), 1384–1404. https://doi.org/10.1080/00423114.2016.1203961.

Ojeda, L., Borenstein, J., Witus, G. and Karlsen, R. (2006), Terrain characterization and classification with a mobile robot. J. Field Robotics, 23: 103-122. https://doi.org/10.1002/rob.20113.

Reina, G. et al. , Increasing autonomy in agricultural robots: unevenness estimation of the terrain ahead. 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), DOI: 10.1109/MetroAgriFor52389.2021.9628698.

Yang, Y.-P., Shih, Y.-C. and Chen, J.-M. (2016), Real-time torque-distribution strategy for a pure electric vehicle with multiple traction motors by particle swarm optimisation. IET Electr. Syst. Transp., 6: 76-87. https://doi.org/10.1049/iet-est.2014.0050.

Saleem, E. , Dao, T. and Liu, Z. (2018) Multiple-Objective Optimization and Design of Series-Parallel Systems Using Novel Hybrid Genetic Algorithm Meta-Heuristic Approach. World Journal of Engineering and Technology, 6, 532-555. doi: 10.4236/wjet.2018.63032.

E. Papadopoulos and D. A. Rey, “The Force-Angle Measure of Tipover Stability Margin for Mobile Manipulator”, Vehicle System Dynamics, vol. 33, pp. 29-48, 2000.

A. F. B. Silva, A. V. Santos, N. R. S. Reis M. A. Meggiolaro, “Traction Control of All-Wheel-Drive Independent Suspension Mobile Robots in 2D Rough Terrain”, ABCM Symposium Series in Mechatronics, Brazilian Society of Mechanical Sciences and Engineering, pp.256-265, 2008.

D. F. Jones, S. K. Mirrazvi and M. Tamiz, “Multi-objective meta-heuristics: an overview of the current state-of-the-art”, European Journal of Operational Research, vol. 137, pp. 1-9, 2002.

Downloads

Published

2023-01-12

How to Cite

Rosa, D. G. G., Pacheco, M. A., Meggiolaro, M. A., & Martha, L. F. (2023). MOGA 4WD: multi-objective genetic algorithm for four-wheel drive electrical vehicle torque distribution in challenging conditions: MOGA 4WD: algoritmo genético multi-objetivo para distribuição de torque em veículos elétricos com tração em quatro rodas e em condições desafiadoras. Brazilian Journal of Development, 9(1), 2821–2835. https://doi.org/10.34117/bjdv9n1-196

Issue

Section

Original Papers