Estudo teórico das interações entre bases nitrogenadas do adn com o ÍON LI+ utilizando o modelo contínuo polarizável / Theoretical study of the interactions between dna nitrogen bases with the LI+ ION using the polarizable continuum model

Authors

  • Débora Ilario da Silva Gomes
  • Antonio Rafael de Oliveira
  • Daniel Garcez Santos Quattrociocchi
  • Carlos Eduardo de Souza Teodoro
  • Lilian Weitzel Coelho Paes

DOI:

https://doi.org/10.34117/bjdv6n6-583

Keywords:

Bases nucléicas, Afinidade íon Metal, TFD

Abstract

Neste trabalho foram estudadas as interações entre o íon Li+ com as bases adenina, guanina e citosina. A otimização de geometria, a energia de ligação e as afinidades de íons metálicos (AIM) foram calculadas usando a Teoria Funcional da Densidade com o funcional B3LYP e o conjunto de base 6-311++G(d,p), com o modelo de solvatação (CPCM). Os locais mais favoráveis de ligação do íon Li+ nas bases nitrogenadas adenina, guanina e citosina foram determinados a partir dos resultados obtidos de afinidade por íons metálicos (AIM) para cada sítio de ligação. A ordem de afinidade íon/base encontrada neste trabalho foi:  Adenina > Guanina > Citosina.

. Quanto maior a diferença de energia entre o HOMO e o LUMO, maior é a estabilidade dos complexos. Foi observado que os complexos com maiores diferenças de energia HOMO-LUMO também possuem valores mais elevados de afinidade íon metal (AIM).

References

AUFFINGER, P.; WESTHOF, E. Water and ion binding around RNA and DNA (C,G) oligomers. Journal of Molecular Biology, v. 300, n. 5, p. 1113-1131, 2000.

BARKER, D. L.; MARSH, R. E. The crystal structure of cytosine. Acta Cryst., v. 17, p. 1581-1587, 1964.

BARONE, V.; COSSI, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A, v. 102, n. 11, p. 1995-2001, 1998.

BARRY, C. G.; DAY, C. S.; BIERBACH, U. Duplex-Promoted Platination of Adenine-N3 in the Minor Groove of DNA:? Challenging a Longstanding Bioinorganic Paradigm. Journal of the American Chemical Society, v. 127, n. 4, p. 1160-1169, 2005.

BECKE, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, v. 38, n. 6, p. 3098-3100, 1988.

BURDA, J. V.; ŠEBESTA, F. Metal Interactions with Nucleobases, Base Pairs, and Oligomer Sequences; Computational Approach. In: LESZCZYNSKI, J. (Ed.). Handbook of Computational Chemistry. Dordrecht: Springer Netherlands, 2016. p.1-48.

CERDA, B. A.; WESDEMIOTIS, C. Li+, Na+, and K+ Binding to the DNA and RNA Nucleobases. Bond Energies and Attachment Sites from the Dissociation of Metal Ion-Bound Heterodimers. Journal of the American Chemical Society, v. 118, n. 47, p. 11884-11892, 1996.

COSTA, L. M. D.; PAES, L. W. C.; CARNEIRO, J. W. D. M. Ab Initio, DFT and semi-empirical studies on interactions of phosphoryl, carbonyl, imino and thiocarbonyl ligands with the li+ cation: affinity and associated parameters. Journal of the Brazilian Chemical Society, v. 23, p. 648-655, 2012.

CURTIS, E. A.; BARTEL, D. P. The hammerhead cleavage reaction in monovalent cations. RNA (New York, N.Y.), v. 7, n. 4, p. 546-552, 2001.

DEAN, K. M.; QIN, Y.; PALMER, A. E. Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. Biochimica et biophysica acta, v. 1823, n. 9, p. 1406-1415, 2012.

DEL BENE, J. E. Molecular orbital study of the lithium(1+) complexes of the DNA bases. The Journal of Physical Chemistry, v. 88, n. 24, p. 5927-5931, 1984.

FRISCH, M. J. et al. Gaussian 09, Revision B.01. Wallingford CT 2009.

GOH, G. B.; KNIGHT, J. L.; BROOKS, C. L. Constant pH Molecular Dynamics Simulations of Nucleic Acids in Explicit Solvent. Journal of Chemical Theory and Computation, v. 8, n. 1, p. 36-46, 2012.

GUDDNEPPANAVAR, R. et al. Synthesis, Biological Activity, and DNA-Damage Profile of Platinum-Threading Intercalator Conjugates Designed To Target Adenine. Journal of Medicinal Chemistry, v. 49, n. 11, p. 3204-3214, 2006.

HASHEMIANZADEH, S. M. et al. Theoretical Study of the Interactions between Isolated DNA Bases and Various Groups IA and IIA Metal Ions by Ab Initio Calculations. Monatshefte für Chemie - Chemical Monthly, v. 139, p. 89-100, 2008.

HIRSHFELD, F. L. Bonded-atom fragments for describing molecular charge densities. Theoretica chimica acta, v. 44, n. 2, p. 129-138, 1977.

LEE, C.; YANG, W.; PARR, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, v. 37, n. 2, p. 785-789, 01/15/ 1988.

LEONARDO ANDRES ESPINOSA, L.; OLGA, L.-A. On the interaction between gold and silver metal atoms and DNA/RNA nucleobases – a comprehensive computational study of ground state properties. Nanotechnology Reviews, Berlin, Boston, v. 4, n. 2, p. 173-191, 2015.

LIPPERT, B. Multiplicity of metal ion binding patterns to nucleobases. Coordination Chemistry Reviews, v. 200-202, p. 487-516, 2000.

MARINO, T.; RUSSO, N.; TOSCANO, M. Gas-phase metal ion (Li+, Na+, Cu+) affinities of glycine and alanine. Journal of inorganic biochemistry, v. 79, n. 1-4, p. 179-185, 2000.

MEYER, M.; SÜHNEL, J. Interaction of Cyclic Cytosine-, Guanine-, Thymine-, Uracil- and Mixed Guanine-Cytosine Base Tetrads with K+, Na+ and Li+ Ions—A Density Functional Study. Journal of Biomolecular Structure and Dynamics, v. 20, n. 4, p. 507-517, 2003.

MINCHIN, S.; LODGE, J. Understanding biochemistry: structure and function of nucleic acids. Essays in biochemistry, v. 63, n. 4, p. 433-456, 2019.

MORRIS, D. L. DNA-bound metal ions: recent developments. v. 5, n. 5, p. 397, 2014.

MOUSSATOVA, A. et al. Theoretical Study of the Structure and Bonding of a Metal?DNA Base Complex:? Al?Guanine. The Journal of Physical Chemistry A, v. 107, n. 44, p. 9415-9421, 2003.

MURRAY, J. B. et al. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chemistry & biology, v. 5, n. 10, p. 587-595, 1998.

OLIVA, R.; CAVALLO, L. Frequency and Effect of the Binding of Mg2+, Mn2+, and Co2+ Ions on the Guanine Base in Watson?Crick and Reverse Watson?Crick Base Pairs. The Journal of Physical Chemistry B, v. 113, n. 47, p. 15670-15678, 2009.

OWCZARZY, R. et al. Predicting Stability of DNA Duplexes in Solutions Containing Magnesium and Monovalent Cations. Biochemistry, v. 47, n. 19, p. 5336-5353, 2008.

PAKIARI, A. H.; FARROKHNIA, M. Nature of Lithium Interactions with DNA Nucleobases: Theoretical Study. Physical Chemistry Research, v. 2, n. 2, p. 229-243, 2014.

PARAJULI, R. DFT Study of Fe2+ and Co2+ - Adenine Complexes in the Gas Phase Int. J. Chem. Sci., v. 14, p. 803-814, 2016.

POLYANICHKO, A. M. et al. The effect of manganese(II) on DNA structure: electronic and vibrational circular dichroism studies. Nucleic acids research, v. 32, n. 3, p. 989-996, 2004.

REYNISSON, J.; STEENKEN, S. The complexation energy of the one-electron oxidized guanine–cytosine base pair and its parent system with small cations. A DFT-study. Journal of Molecular Structure: THEOCHEM, v. 635, n. 1, p. 133-139, 2003.

RODGERS, M. T.; ARMENTROUT, P. B. Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies. Journal of the American Chemical Society, v. 122, n. 35, p. 8548-8558, 2000.

RUSSO, N.; TOSCANO, M.; GRAND, A. Bond Energies and Attachments Sites of Sodium and Potassium Cations to DNA and RNA Nucleic Acid Bases in the Gas Phase. Journal of the American Chemical Society, v. 123, n. 42, p. 10272-10279, 2001a.

______. Lithium Affinity for DNA and RNA Nucleobases. The Role of Theoretical Information in the Elucidation of the Mass Spectrometry Data. The Journal of Physical Chemistry B, v. 105, n. 20, p. 4735-4741, 2001b.

SALEHI, S. et al. Pharmaceutical Nickel(II) Chelation Properties of 3-Hydroxyflaven, Deferiprone and Maltol Metal Chelators: A Density Functional Study. Physical Chemistry Research, v. 8, n. 1, p. 91-110, 2020.

SARAVANAN, V. et al. Interaction of (G4)2 and (X4)2 DNA quadruplexes with Cu+, Ag+ and Au+ metal cations: a quantum chemical calculation on structural, energetic and electronic properties. Structural Chemistry, v. 31, n. 1, p. 465-484, 2020.

SARVAN, S. et al. Functional insights into the interplay between DNA interaction and metal coordination in ferric uptake regulators. Scientific Reports, v. 8, n. 1, p. 7140, 2018.

SHAMSI, M. H.; KRAATZ, H.-B. Interactions of Metal Ions with DNA and Some Applications. Journal of Inorganic and Organometallic Polymers and Materials, v. 23, n. 1, p. 4-23, 2013.

STEWART, R. F.; JENSEN, L. H. Crystal Structure of 9?Methyladenine. The Journal of Chemical Physics, v. 40, n. 8, p. 2071-2075, 1964.

SUN, A. et al. Lithium suppresses cell proliferation by interrupting E2F–DNA interaction and subsequently reducing S–phase gene expression in prostate cancer. The Prostate, v. 67, n. 9, p. 976-988, 2007.

SUN, L.; BU, Y. Marked Variations of Dissociation Energy and H-Bond Character of the Guanine-Cytosine Base Pair Induced by One-Electron Oxidation and Li+ Cation Coupling. The Journal of Physical Chemistry B, v. 109, n. 1, p. 593-600, 2005.

TOMASI, J.; PERSICO, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews, v. 94, n. 7, p. 2027-2094, 1994.

TORABI, S.-F. et al. In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing. Proceedings of the National Academy of Sciences, v. 112, n. 19, p. 5903-5908, 2015.

YANG, B. et al. IRMPD Action Spectroscopy of Alkali Metal Cation–Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation. Journal of the American Society for Mass Spectrometry, v. 24, n. 10, p. 1523-1533, 2013/10/01 2013.

YANG, Z.; RODGERS, M. T. Tautomerization in the formation and collision-induced dissociation of alkali metal cation-cytosine complexes. Physical Chemistry Chemical Physics, v. 14, n. 13, p. 4517-4526, 2012.

ZHU, W. et al. The Multiplicity, Strength, and Nature of the Interaction of Nucleobases with Alkaline and Alkaline Earth Metal Cations:? A Density Functional Theory Investigation. The Journal of Physical Chemistry A, v. 108, n. 18, p. 4008-4018, 2004.

Published

2020-06-26

How to Cite

Gomes, D. I. da S., Oliveira, A. R. de, Quattrociocchi, D. G. S., Teodoro, C. E. de S., & Paes, L. W. C. (2020). Estudo teórico das interações entre bases nitrogenadas do adn com o ÍON LI+ utilizando o modelo contínuo polarizável / Theoretical study of the interactions between dna nitrogen bases with the LI+ ION using the polarizable continuum model. Brazilian Journal of Development, 6(6), 40970–40984. https://doi.org/10.34117/bjdv6n6-583

Issue

Section

Original Papers