Evaluation of phycocyanin production by marine microalgae Arthrospira platensis, grown in fish wastewater / Avaliação da produção de ficocianina pela microalga marinha Arthrospira platensis, cultivada em efluente piscícola


  • Igor Gabriel Rodrigues Ferreira Gomes Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Francisco Regivânio do Nascimento Andrade
  • Gabriel de Mesquita Facundo
  • Carlos Henrique Profírio Marques
  • Leonardo Freitas Galvão de Albuquerque
  • José William Alves da Silva
  • Rafael Lustosa Maciel
  • João Felipe Nogueira Matias
  • Elenise Gonçalves de Oliveira
  • Francisco Hiran Farias Costa




Phycobiliprotein, Extraction, Cyanophyceae.


Phycocyanins are water-soluble proteins that work as accessory pigments and have several properties, such as immunostimulant action, cholesterol reducing effect, anti-inflammatory, antiviral, anticancer, antioxidant effects, among other uses. This study aimed to evaluate the accumulation of phycocyanin and biomass production of the microalgae Arthrospira (Spirulina) platensis grownin fish effluent. The experiment was carried out in two phases. The first developed in an indoor environment with controlled conditions, while the second, in a recirculation system, in an outdoor environment, using for both phases the Venkataraman media (control) and Nile tilapia effluent. There was no significant difference (p>0.05) between the performance of algae grown under the same conditions. Phycocyanin concentrations were higher for the treatments using modified Venkataraman medium. The purification process by ion exchange chromatography resulted in higher pigment concentrations for the eluted fractions with 0.2 M NaCl for all crude phycocyanin extracts.


ABALDE, J.; BETANCOURT, L., TORRES, E.; CID, A.; BARWELL, C. Purification and characterization of phycocyanin from marine cyanobacterium Synechococcus sp. IO9201. Plant Science, v.136, n.1, p.109-120, 1998.

BECKER, E.W. Microalgae as a source of protein. Biotechnology Advances, v. 25, n. 2, p. 207-210, 2007.

BENNETT, A.; BOGORAD, L. Complementary chromatic adaptation in a filamentous bluegreen alga. Journal of Cell Biology, v. 58, n. 2, p.419-435, 1973.

BÖCKER, L.; HOSTETTLERA, T.; DIENERB, M.; EDERC, S.; DEMUTHC, T.; ADAMCIKB, J.; REINEKED, K.; LEEBD, E.; NYSTRÖMC, L.; MATHYS,A. Time-temperature-resolved functional and structural changes of phycocyanin extracted from Arthrospira platensis/Spirulina. Food Chemistry, v. 316, 2020.

BÖCKER, L.; ORTMANN, S.; SURBER, J.; LEEB, E.; REINEKE, K.; MATHYS, A. Biphasic short time heat degradation of the blue microalgae protein phycocyanin from Arthrospira platensis. Innovative Food Science & Emerging Technologies, v. 52, p. 116-121, 2019.

BOROWITZKA, M. A. High-value products from microalgae-their development and commercialization. Journal of Applied Phycology, v. 25, n.3, p. 743-756, 2013.

CAPORGNO, M. P.; MATHYS, A. Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. Frontiers in Nutrition, v. 5, p. 1-10, 2018.

CHAUDHARY, A.; GUSTAFSON, D.; MATHYS, A. Multi-indicator sustainability assessment of global food systems. Nature Communications, v. 9, p. 1-13, 2018.

CHEN, C. Y.; KAO, P. C.; TAN, C. H.; SHOW, P. L.; CHEAH, W. Y.; LEE, W. L.; CHANG, J. S. Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Spirulina platensis. Biochemistry Engineer Journal, v. 112, p. 78-85, 2016.

CHEN, H.B.; WU, J. Y.; WANG, C. F.; FU, C. C.; SHIEH, C. J.; CHEN, C. I.; WANG, C. Y.; LIU, Y.C. Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemistry Engineer Journal, v. 53, p. 52-56, 2010.

EL-KASSAS, H. Y.; HENEASH, A. M. M.; HUSSEIN, N. R. Cultivation of Arthrospira (Spirulina) platensis using confectionary wastes for aquaculture feeding. Journal of Genetic Engineering and Biotechnology, v. 13, n. 2, p.145-155, 2015.

FAO. The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Roma. 2018. 227 p.

GOVINDJEE, S.; WONG, D.; PRÉZELIN, B. B.; SWEENEY, B. M. Chlorophyll-a fluorescence of Gonyaulax-Polyedra grown on a light-dark cycle and after transfer to constant light. Photochemistry and Photobiology, v. 30, n. 3, p. 405-411, 1979.

HARISKOS, I.; POSTEN, C. Biorefinery of microalgae - opportunities and constraints for different production scenarios. Biotechnology Journal, v. 9, n. 6, p. 739-752, 2014.

HO, S.; LIAO, J.; CHEN, C.; CHANG, J. Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. Bioresource Technology, v. 247, p. 669-675, 2018.

JUTUR, P.P.; NESAMMA, A. A.; SHAIKH, K. M. Algae-derived marine oligosaccharides and their biological applications. Frontiers in Marine Science, v. 3, p. 1-5, 2016.

LEE N.; OH H.; KIM, HE.; AHN, C. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. Bioresource Technology, v. 227, p. 164-170, 2017.

LEE, I.; ERICKSON, L. E.; YANG, S. S. Kinetics and bionergetics of light-limited photoautotrophic growth of Spirulina platensis. Biotechnology and Bioengineering, v. 29, p. 832–843, 1987.

LI, T.; XU, J.; GAO, B.;XIANG, B.; LI, A.;ZHANG, Z. Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Research, v. 16, p. 481-491, 2016.

LU, W.; ALAM, M. A.; LUO, W.; ASMATULU, E. Integrating Spirulina platensis cultivation and aerobic composting exhaust for carbon mitigation and biomass production. Bioresource Technology, v. 271, p. 59-65, 2018.

MANIRAFASHA, E.; MURWANASHYAKAA, T.; NDIKUBWIMANAC, T.; NURRASHID AHMEDA, N. R.; LI, J.; LU, Y.; ZENG, X.; LING, X.; JING, K. Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresource Technology, v. 255, p. 293-301, 2018.

MAO, R.; GUO, S. Performance of the mixed LED light quality on the growth and energy efficiency of Arthrospira platensis. Applied Microbiology and Biotechnology, v. 102, p. 5245–5254, 2018.

MARKOU, G. Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresource Technology, v. 116, p. 533-53, 2012.

MARTELLI, G.; FOLLI, C.; VISAI, L.; DAGLIA, M.; FERRARI, D. Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications. Process Biochemistry, v. 49, n. 1, p. 154-159, 2014.

MATSUDO, M. C.; BEZERRA, T. P.; SATO, S.; PEREGO, P; CONVERTI, A.; CARVALHO, J. C. M. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochemical Engineering Journal. v. 43, p. 52-57, 2009.

MEHAR, J.; SHEKH, A.; NETHRAVATHY, M. U.; SARADA, R.; CHAUHAN, V. S. Automation of pilot-scale open raceway pond: A case study of CO2-fed pH control on Spirulina biomass, protein and phycocyanin production. Journal of CO2 Utilization, v. 33, p. 384-393, 2019.

MEZZOMO, N.; SAGGIORATO, A. G.; SIEBERT, R.; TATSCH, P.; OLIVEIRA, L.; HEMKEMEIER, M. C.; COSTA, M.; BERTOLIN, L. A. V.; ELITA, T. COLLA, L. M. Cultivation of microalgae Spirulina platensis (Arthrospira platensis) from biological treatment of swine wastewater. Food Science and Technology, v. 30, n. 1, p. 173-178, 2010.

MORENO, J. F.; CORZO, N.; MONTILLA, A.; VILLAMIEL, M.; OLANO, A. Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Current Opinion in Food Science, v. 13, p. 50–5, 2017.

NOGUEIRA, S. M. S. Tratamento de efluentes de cultivos de tilápia do nilo (Oreochromis niloticus) com a microalga Spirulina platensis. 2012. 59 f. Dissertação (Mestrado em Engenharia de Pesca) - Universidade Federal do Ceará, Fortaleza, 2012.

OLGUÍN, E. J.; GALICIA, S.; ANGULO-GUERRERO, O.; HERNANDEZ, E. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresource Technology, v. 77, p. 19-24, 2001.

PANDEY, V.; PANDEY, A.; SHARMA V. Biotechnological applications of cyanobacterial phycobiliproteins. International Journal of Current Microbiology and Applied Sciences, v. 2, p. 89-97, 2013.

PATIL, G.; RAGHAVARAO, K. S. M. S. Aqueous two phase extraction for purification of Cphycocyanin. Biochemical Engineering Journal, v. 34, p.156-164, 2007.

PRATES, D. F.; RADMANN, E. M.; DUARTE, J. H.; MORAIS, M. G.; COSTA, J. A. V. Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, v. 256, p. 38-43, 2018.

RAPOSO, M. F.; MORAIS, A. M. M. B.; MORAIS, R. M. F. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Marine Drugs, v. 48, n. 2, p. 1-27, 2016.

RUIZ-MARTINEZ A.; MARTIN GARCIA N.; ROMERO I.; SECO A.; FERRER J. Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, v. 126, p. 247-253, 2012.

SABOYA, J. P. S. Teores de ?-Caroteno e ?-tocoferol presentes na microalga Spirulina (Arthrospira) platensis cultivada com diferentes fotoperíodos. 2010. Dissertação (Mestrado em Engenharia de Pesca) – Centro de Ciências Agrárias, Universidade Federal do Ceará, Fortaleza. 2010.

SASSANO, C. E. N. Cultivo de Spirulina platensis por processo contínuo utilizando cloreto de amônio como fonte de nitrogênio. 2004. 116 f. Tese de Doutorado – Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, São Paulo.

SCHERHOLZ, M.L.; CURTIS, W.R. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC Biotechnology, v. 13, p. 1-15, 2013.

SHANTHI, G.; PREMALATHA, M.; ANANTHARAMAN, N. Effects of L-amino acids as organic nitrogen source on the growth rate, biochemical composition and polyphenol content of Spirulina platensis. Algal Resarch, v. 35, p. 471-478, 2018.

SHARMA N.; SHARMA P. Industrial and biotechnological applications of algae: a review. Journal of Advances in Plant Biology, v. 1, n. 1, p. 1–26, 2017.

SILVEIRA, S. T.; BURKERT, J. F. M.; COSTA, J. A. V.; BURKERT, S. J.; KELIL, S. J. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology, v. 98, p. 1629-1634, 2007.

SLOTH, J.K.; JENSEN, H.C.; PLEISSNER, D;. N.; ERIKSEN.T. Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries. Bioresource Technology, v. 238, p. 296-305, 2017.

SMETANA, S.; MATHYS, A.; KNOCH, A.; HEINZ, V. Meat alternatives: life cycle assessment of most known meat substitutes. The International Journal of Life Cycle Assessment, v. 20, p. 1254–67, 2015.

SMETANA, S.; SANDMANN, M.; ROHN, S.; PLEISSNER, D.; HEINZ, V. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresource Technology, v. 245, p. 162-170, 2017.

SOARES, N. N. Cultivo e extração de pigmentos das microalgas Spirulina platensis e Haematococcus pluvialis. 2005. 56 f. Dissertação (Mestrado em Engenharia de Pesca) – Centro de Ciências Agrárias, Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, 2005.

TEIMOURI, M; AMIRKOLAIE, A. K; YEGANEH, S. The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture, v.396-399, n.1, p.14-19, 2013.

VERMEULEN, S. J.; CAMPBELL, B. M.; INGRAM, J. S. I. Climate change and food systems. Annual Reviews of Environmental and Resources, v. 37, p. 195–222, 2012.

WAN, M. X.; WANG, Z. Y.; ZHANG, Z.; WANG, J.; LI, S. L.; YU, A. Q.; LI Y. G. A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria. Bioresource. Technology, v. 218, p. 272-27, 2016.

WELLS, M. L.; POTIN, P.; CRAGIE, J. S.; RAVEN, J. A.; MERCHANT, S. S.; HELLIWELL, K. E.; SMITH, A. G.; CAMIRE, M. E.; BRAWLEY, S. H. Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, v. 29, p.949–982, 2017.

WELLS, M. L.; POTIN, P.; CRAIGIE, J. S.; RAVEN, J. A.; MERCHANT, S. S.; HELLIWELL, K. E.; SMITH, A. G.; CAMIRE, M. E.; BRAWLEY, S. H.Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, v. 29, n. 2, p. 949-982, 2016.

WU, G.; FANZO, J.; MILLER, D. D.; PINGALI, P.; POST, M.; STEINER, J. L.; THALACKER-MERCER, A. E. Production and supply of high-quality food protein for human consumption: sustainability, challenges, and innovations. Annals of the New York Academy of Sciences, v. 1321, p. 1-19, 2014.




How to Cite

Gomes, I. G. R. F., Andrade, F. R. do N., Facundo, G. de M., Marques, C. H. P., Albuquerque, L. F. G. de, Silva, J. W. A. da, Maciel, R. L., Matias, J. F. N., Oliveira, E. G. de, & Costa, F. H. F. (2020). Evaluation of phycocyanin production by marine microalgae Arthrospira platensis, grown in fish wastewater / Avaliação da produção de ficocianina pela microalga marinha Arthrospira platensis, cultivada em efluente piscícola. Brazilian Journal of Development, 6(4), 20298–20317. https://doi.org/10.34117/bjdv6n4-270



Original Papers