Resistance profile from staphylococcus aureus and pseudomonas aeruginosa obtained from tracheostomized children in the four seasons of the year

Perfil de resistência de staphylococcus aureus e pseudomonas aeruginosa obtidos de crianças traqueostomizadas nas quatro estações do ano

Authors

  • Juliana Afonso de Almeida
  • Caroline Espíndola de Barros
  • Gustavo Henrique da Silva Ayres
  • Mariana Helena e Silva
  • Camilla Gabriela de Oliveira
  • Andressa Liberal Santos
  • Marcos Antônio Batista de Carvalho Júnior
  • Carla Afonso da Silva
  • Lilian Carla Carneiro
  • Jubé Wastowski
  • Melissa Ameloti Gomes Avelino

DOI:

https://doi.org/10.34117/bjdv8n12-285

Keywords:

anti-bacterial agents, resistance, beta-lactamases, pediatrics, biofilm

Abstract

Objective: The objective of this study was to microbiologically characterize the tracheal secretion of tracheostomized children, evaluate biofilm formation and study the phenotypic and molecular profile of the antimicrobial resistance of Sthapylococcus aureus and Pseudomonas aeruginosa isolates. Methods: 88 samples of tracheal secretions were collected. The material was processed to perform phenotypic tests and bacterial identification. Tests were used to identify biofilms using Congo red agar test and microdilution in a 96-well plate, and the qPCR method was used to verify resistance. Results: Twelve Staphylococcus aureus samples and 30 Pseudomonas aeruginosa were isolated of pediactric tracheostomized patients. All the S. aureus samples were positive to biofilm formation in Congo red agar test. In the antibiogram test, S. aureus showed resistance to seven antimicrobials. Regarding the identification of resistance genes, blaZ was amplified in 57.1% and mecA in 28.6% of the isolated S. aureus. Pseudomonas aeruginosa showed blaOXA with 66,7% e blaKPC with 58,3%. In plasmid DNA, blaNDM stood out with 58,3% positive. Conclusions: The control of resistant bacteria involved in biofilms in the stoma of tracheostomized patients is a great challenge, since the simple cannula change does not always allow the control of the microbiota, which increases the vulnerability of patients to future respiratory complications.

References

Itamoto CH, Lima BT, Sato J, Fujita RR. Indications and complications of tracheostomy in children. Braz J Otorhinolaryngol. 2010; 76:326-31.

Friedberg SA, Griffith TE, Hass GM. Histologic changes in the trachea following Tracheotomy. Ann Otorhinolaryngol. 1965; 74:785–98 cited by El Cheikh MR, Barbosa JM, Caixêta JAS, Avelino MAG. Microbiology of tracheal secretions: what to expect with children and adolescents with tracheostomies. Int Arch Otorhinolaryngol. 2018; 22:50-4.

Rodney J, Ojano-dirain CP, Antonelli PJ, Silva RC. Effect of repeated tracheotomy tube reprocessing on biofilm formation. Laryngoscope. 2016; 126:996-9.

Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nat. 2018; 553:427-36.

Matos ECO, Modesto NS, Costa WLO, Carneiro ICRS, Lima KVB. Prevalência de agentes microbianos e sensibilidade da Pseudomonas aeruginosa. Ver. Paramed. 2014; 28:35-43.

Pozzi M, Pellegrino P, Galbiati S, Granziera M, Locatelli F, Carvonale C et al. Prevalence of respiratory colonization and related antibiotic resistances among pediatric tracheostomized patients of a long-term rehabilitation centre in Italy. Eur J Clin Microbiol Infect Dis. 2014; 34:169-75.

Sanders CD, Guimbellot JS, Muhlebach MS, Lin FC, Gilligan P, Esther CR. Tracheostomy in children: epidemiology and clinical outcomes. Pediatr Pulmonol 2018; 53:1269-75.

Lipový B, Brychta P, Řihová H, Suchanek I, Hanslianová M, Cvanová M et al. Effect of timing of tracheostomy on changes in bacterial colonization of the lower respiratory tract in burned children. Burns. 2013; 39:243–8.

Procop GW, Church DL, Hall GS, Janda WM, Koneman EW, Schreckenberder PC, Woods GL. Koneman Diagnóstico Microbiológico: Texto e atlas colorido. 7ed. Rio de Janeiro: Guanabara Koogan; 2018.

Brasil. Microbiologia clínica para o controle de infecção relacionada à assistência à saúde. Agência Nacional de Vigilância Sanitária - Anvisa. 2013.

Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol. 1989; 42:872-4.

endolkar PM, Baghdayan AS, Gilmore MS, Shankar N. Enterococcal surface protein, esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun. 2004; 72:6032-9.

Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Microbiol. 1966; 45:493-6.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 2018.

Lin Q, Xu P, Li J, Chen Y, Feng J. Direct bacterial loop-mediated isothermal amplification detection on the pathogenic features of the nosocomial pathogen – methicillin resistant Staphylococcus aureus strains with respiratory origins. Microb Pathog. 2017; 109:183-8.

Jacoby GA, Munoz-Price LS. The new β-lactamases. N Engl J Med. 2005; 352:380-91.

Lee K, Yong D, Yum JH, Lim YS, Bolmstrom A, Qwarnstrom A et al. Evaluation of Etest MBL for detection of blaIMP-1 and blaVIM-2 allele-positive clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2005; 43:942-4.

Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: The quiet before the storm? Clin Microbiol J. 2005; 18:306-25.

Picoli SU. Metalo-beta-lactamase e Pseudomonas aeruginosa. Rev Bras Anal Clin. 2008; 40:273-7.

Dogonchi AA, Ghaemi EA, Ardebili A, Yazdansetad S, Pournajaf A. Metallo-β-tactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in northern Iran: A potential threat to clinical therapeutics. Tzu Chi Med J. 2018; 30:90-6.

El Cheikh, MR, Barbosa JM, Caixêta JAS, Avelino MAG. Microbiology of tracheal secretions: what to expect with children and adolescents with tracheostomies. Int Arch Otorhinolaryngol. 2018; 22:50-4.

Avelino MAG, Maunsell R, Valera FCP, Neto JFL, Schweiger C, Miura CS et al. First Clinical Consensus and National Recommendations on Tracheostomized Children of the Brazilian Academy of Pediatric Otorhinolaryngology (ABOPe) and Brazilian Society of Pediatrics (SBP). Braz J Otorhinolaryngol. 2017; 83:498-506.

Mota L, Cavalho G, Brito V. Laryngeal complications by orotracheal intubation: Literature review. Int Arch Otorhinolaryngol [Internet]. 2012; 16:236–45.

Reyes SC, Martínez TM, Reyes NE. Pediatric tracheostomy: a ten-year analysis in the Intensive Care Unit of Sancti Spiritus “José Martí” Pediatric Teaching Hospital. 2014;14(04).

Tucker JA, Silberman HD. Tracheotomy in Pediatrics. Ann Otol Rhinol Laryngol. 1972 [cited 2018 Nov 13];81:818–24.

Doherty C, Neal R, English C, Cooke J, Atkinson D, Bates L, et al. Multidisciplinary guidelines for the management of paediatric tracheostomy emergencies. Anaesthesia. 2018.

Chua SL, Yam JKH, Hao P, Adav SS, Salido MM, Liu Y, et al. Selective labelling and eradication of antibiotic-Tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat Commun. 2016;7:1–11.

Lister JLARH. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Prz Geofiz. 2015; 60:217–35.

Baldan R, Cigana C, Testa F, Bianconi I, De Simone M, Pellin D, et al. Adaptation of Pseudomonas aeruginosa in Cystic Fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLoS One. 2014 [cited 2019 Feb 8];9(3):e89614.

Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa Drives S. aureus towards Fermentative Metabolism and Reduced Viability in a Cystic Fibrosis Model. J Bacteriol. 2015 [cited 2019 Feb 8];197:2252–64.

Hassoun A, Huff MD, Weisman D, Chahal K, Asis E, Stalons D, et al. Seasonal variation of respiratory pathogen colonization in asymptomatic health care professionals: A single-center, cross-sectional, 2-season observational study. Am J Infect Control. 2015; 43:865–70.

Abdollahi A, Shoar S, Shoar N. Microorganisms’ colonization and their antibiotic resistance pattern in oro - tracheal tube. Iran J Microbiol. 2013; 5:102–7.

Fitzpatrick F, Humphreys H, Smyth E, Kennedy CA, O’Gara JP. Environmental regulation of biofilm formation in intensive care unit isolates of Staphylococcus epidermidis. J Hosp Infect. 2002; 52:212–8.

Lima JLC, Alves, LR, Da Paz JNP, Rabelo MA, Maciel MAV, De Morais MMC. Analysis of biofilm production by clinical isolates of Pseudomonas aeruginosa from patients with ventilator-associated pneumonia. Ver Bras Ter Intensiva. 2017; 29:310-6.

Perez LRR, Costa MCN, Freitas ALP, Barth AL. Evaluation of biofilm production by Pseudomonas aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients. Brazilian J Microbiol. 2011; 42:476-9.

Wei Q, Ma LZ. Biofilm Matrix and Its Regulation in Pseudomonas aeruginosa. 2013; 20983–1005.

Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000 [cited 2019 Feb 9]; 40:175–9.

Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y. In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int J Gen Med. 2018; 11:25–32.

Al-kafaween MA, Hilmi ABM, Jaffar N, Al-Jamal HAN, Zahri MK. Determination of optimum incubation time for formation of Pseudomonas aeruginosa and Streptococcus pyogenes biofilms in microtiter plate. National Research Centre. 2019; 43:100.

Amankwah S, Abdella K, Kassa T. Bacterial biofilm destruction: A focused review on the recent use of phage-based strategies with other antibiofilm agents. Nanotechnology, Science and Applications. 2021; 14:161-177.

Flores-Vargas G, Bergsveinson J, Lawrence JR, Korber DR. Environmental biofilms as reservoirs for antimicrobial resistance. Frontiers in Microbiology. 2021; 12:766242.

Uruen C, Chopo-Escuin G, Tommassen J, Manair-Jaime R, Arenas J. Biofilms as promoters of bacterial antibiotics resistance and tolerance. Antibiotics. 2021; 10:1-36.

Sydnor ERM, Perl TM. Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev. 2011; 24:141–73.

Published

2022-12-29

How to Cite

Almeida, J. A. de, Barros, C. E. de, Ayres, G. H. da S., Silva, M. H. e, Oliveira, C. G. de, Santos, A. L., Júnior, M. A. B. de C., Silva, C. A. da, Carneiro, L. C., Wastowski, J., & Avelino, M. A. G. (2022). Resistance profile from staphylococcus aureus and pseudomonas aeruginosa obtained from tracheostomized children in the four seasons of the year: Perfil de resistência de staphylococcus aureus e pseudomonas aeruginosa obtidos de crianças traqueostomizadas nas quatro estações do ano. Brazilian Journal of Development, 8(12), 81108–81133. https://doi.org/10.34117/bjdv8n12-285

Issue

Section

Original Papers