Antibiotic resistance in the superficial mucosa microbiota in an Amazonian fish, mapará (Hypophthalmus spp.) / Resistência a antibióticos na microbiota do muco superficial em peixe amazônico, mapará (Hypophthalmus spp.)

Authors

  • Graciene do Socorro Taveira Fernandes
  • Jade Oliveira Abreu
  • Fátima Cristiane Teles de Carvalho
  • Oscarina Viana Sousa

DOI:

https://doi.org/10.34117/bjdv7n1-690

Keywords:

teleost, mucosa, microbiome, antimicrobials, resistance.

Abstract

Little is known about environmental variables and pressures that shape this microbiota. The objective of this research was to analyze the susceptibility to antimicrobials among bacteria present in the superficial mucosa microbiota of specimens of the Amazonian fish mapará (Hypophthalmus sp.) captured for industrial benefit and in local popular fairs. Surface mucosa samples from 86 mapara specimens were collected using sterile swabs. Material was plated using the pour plate technique in TSA culture medium and following isolation were made from grown colonies. Isolated bacteria were differentiated according to the structure of the cell wall and subjected to an antibiogram test against representatives of various antibiotic classes. The isolates presented mono and multidrug resistance profiles to the tested antibiotics typical for environments where aquaculture activity is not yet established. Penicillin resistance was the most frequent phenotype for the set of strains. The growth of riverside populations without sewage treatment infrastructure and the presence of heavy metals may have been decisive for the profiles found.

References

AARESTRUP, F. M. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philosophical Transactions of the Royal Society B, v. 370, p. 20140085, 2015.

ALLEN, H. K.; DONATO, J.; WANG, H. H.; CLOUD-HANSEN, K. A.; DAVIES, J.; HANDELSMAN, J. Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews, Microbiology, v. 8, n. 251, 2010.

APJOK, G.; BOROSS, G.; NYERGES, A.; FEKETE, G.; LÁZÁR, V.; PAPP, B.; PÁL, C.; CSÖRGO, B. Limited Evolutionary Conservation of the Phenotypic Effects of Antibiotic Resistance Mutations. Molecular Biology and Evolution, v. 36, n. 8, p.1601–1611, 2019.

BAQUERO, F.; MARTÍNEZ, J.L.; CANTÓN, R. Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, v. 19, p. 260–265, 2008.

BAUER, A.W.; KIRBY, W. M.; SHERRIS, J. C.; TURCK, M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, v. 45, p. 493–496, 1966.

BECEIRO, A.; TOMÁS, M.; BOU, G. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World? Clinical Microbiology Reviews, v. 26, n. 2, p. 185–230, 2013.

BECKER, C. G; LONGO, A. V; HADDAD, C. F. B; ZAMUDIO, K. R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. R. Soc. B, v. 284, n. 20170582, 2017.

BELTRAN-PEDREROS, S.; ZUANON, J.; LEITE, R. G.; PELEJA, J. R. P.; MENDONÇA, A. B.; FORSBERG, B. R. Mercury bioaccumulation in fish of commercial importance from different trophic categories in an Amazon floodplain lake. Neotropical Ichthyology, v. 9, n. 4, p. 901-908, 2011.

BHULLAR, K.; WAGLECHNER, N, PAWLOWSKI, A.; KOTEVA, K.; BANKS, E.D.; JOHNSTON, M.D.; BARTON, H.A.; e WRIGHT, G.D. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One, v. 7, p. e34953, 2012.

BOUKI, C.; VENIERI, D.; DIAMADOPOULOS, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicology and Environmental Safety, v. 91, n. 1, p. 1-9, 2013.

BUSCHMANN, A. H.; TOMOVA, A.; LÓPEZ, A.; MALDONADO, M. A.; HENRIÍQUEZ, L. A.; IVANOVA, L.; MOY, F.; GODFREY, H. P.; CABELLO, F. C. Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment. PLoS One, v. 7, n. 8, p. e42724. 2012.

D'AMORE, J. J.; AL-ABED, S. R.; SCHECKEL, K. G.; RYAN, J. A. Methods for speciation of metals in soils: a review. Journal of Environmental Quality, v. 34, n. 5, p. 1707-45, 2005.

DAVIES, J.; DAVIES, D. Origins and Evolution of Antibiotic Resistance. Microbiology and Molecular Biology Reviews, v. 74, n. 3, p. 417–433, 2010.

DI CESARE, A.; ECKERT, E. M.; ROGORA, M.; CORNO, G. Rainfall increases the abundance of antibiotic resistance genes within a riverine microbial community. Environmental Pollution, v. 226, n. 473e478, 2017.

DIAS, C.; MOTA, V.; MARTINEZ-MURCIA, A.; SAAVEDRA, M. J. Antimicrobial resistance patterns of Aeromonas spp. isolated from ornamental fish. Journal Aquaculture Research Development, v. 3, n. 3, p. 1000131, 2012.

DIXIT, R.; WASIULLAH; MALAVIYA, D.; PANDIYAN, K.; SINGH, U. B.; SAHU, A.; SHUKLA, R.; SINGH, B. P.; RAI, J. P.; SHARMA, P. K.; LADE, H.; PAUL, D. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability, v. 7, p. 2189-2212, 2015.

DOMINGOS, M. O.; FRANZOLIN, M. R.; ANJOS, M. T.; FRANZOLIN, T. M. P.; ALBES, R. C. B.; ANDRADE, G. R.; LOPES, R. J. L.; BARBARO, K. C. The influence of environmental bacteria in freshwater stingray wound-healing. Toxicon, v. 58, p. 147–153, 2011.

DSMZ- DEUTSCHE SAMMLUNG von MIKROORGANISMEN UND ZELLKULTUREN. Accessible in: https://www.dsmz.de/bacterial-diversity/prokaryotic-nomenclature-up-to-date/prokariotic-nomenclature-up-to-date.html. Accessed in October 31, 2016.

FERNANDÉZ, M.; CONDE, S.; TORRE, J.; MOLINA-SANTIAGO, C.; RAMOS, J.; DUQUE, E. Mechanisms of Resistance to Chloramphenicol in Pseudomonas putida KT2440. Antimicrobial Agents and Chemotherapy, p. 1001–1009, 2012.

FOUNOU, L. L.; FOUNOU, R. C.; ESSACK, S. Y.. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Frontiers Microbiology. v. 7:1881, 2016.

FORSBERG, K. J.; PATEL, S.; GIBSON, M. K.; LAUBER, C. L.; KNIGHT, R.; FIERER, N.; DANTAS, G. Bacterial phylogeny structures soil resistomes across habitats. Nature, v. 509, n. 7502, p. 612–616, 2014.

GAO, P.; MAO, D.; LUO, Y.; WANGA, L.; XU, B.; XU, L. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Research, v. 46, p. 2355- 2364, 2012.

GHOSH, K.; MANDAL, S. Antibiotic Resistant Bacteria in Consumable Fishes from Digha coast, West Bengal, India. Proceedings of the Zoological Society, v. 63, n. 1, p. 13–20. 2010.

GIRI, S. S.; SUKUMARAN, V.; DANGI, N. K. Characteristics of Bacterial Isolates from the Gut of Freshwater Fish, Labeo rohita that May be Useful as Potential Probiotic Bacteria. Probiotics & Antimicrobial Proteins, v. 4, p. 238–242, 2012.

GILLINGS, M. R.. Evolutionary consequences of antibiotic use for the resistome, mobilome, and microbial pangenome. Frontiers Microbiology. v. 4 Article 4. 2013.

GUIMARÃES, D. O.; MOMESSO, L. S.; PUPO, M. T. Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Química Nova, v. 33, n. 3, p. 667-679, 2010.

HANIFFA, M. A.; VISWANATHAN, S.; JANCY, D.; POOMARI, K.; MANIKANDAN. S. Antibacterial studies of fish mucus from two marketed air-breathing fishes – Channa striatus and Heteropneustes fossilis. International Research Journal of Microbiology, v. 5, n. 2, p. 22-27, 2014.

KANG, C.-H.; SHIN, Y.J.; JANG, S.C.; YU, H.S.; KIM, S.K.; AN, S.; PARK, K.; SO, J.-S. Characterization of Vibrio parahaemolyticus isolated from oysters in Korea: Resistance to various antibiotics and prevalence of virulence genes. Marine Pollution Bulletin, v. 118, n. 1-2, p. 261-266, 2017.

HORINOUCHI, T.; MAEDA, T.; KOTANI, H.; FURUSAWA, C. Suppression of antibiotic resistance evolution by single-gene deletion. Scientific Reports, 10:4178. 2020.

LATHA, N.; MOHAN, M. R. The Bacterial Microflora in the Fish Organs – A Public Health Aspect. Indian Journal of Advances in Chemical Science, v. 1, n. 3, p. 139-143, 2013.

LE ROUX, F.; BLOKESCH, M. Eco-evolutionary dynamics linked to horizontal gene transfer in Vibrios. Annual Review of Microbiology, v. 72, p. 89–110. 2019.

LEE, H.; KIM, H-Y. Lantibiotics, Class I Bacteriocins from the Genus Bacillus. Journal of Microbiology and Biotechnology, v. 21, n. 3, p. 229–235, 2011.

LEISNER, J. J.; JØRGENSEN, N. O. G.; MIDDELBOE, M. Predation and selection for antibiotic resistance in natural environments. Evolutionary Applications, v. 9, p. 427–434, 2015.

LEONARD, A. B.; CARLSON, J. M.; BISHOFF, D. E.; SENDELBACH, S. I.; YUNG, S.B.; RAMZANALI, S.; MANAGE, A. B. W.; HYDE, E. R.; PETROSINO, J. F.; PRIMM, T. P. The Skin microbiome of Gambusia affinis is defined and selective. Advances in Microbiology, v. 4, p. 335-343, 2014.

LOBANOVSKA, M.; PILLA, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale Journal of Biology and Medicine, v. 90, p.135-145, 2017.

MAHATO, S.; MAHATO, A.; POKHAREL, E.; TAMRAKAR, A. Detection of extended spectrum beta lactamase producing E. coli and Klebsiella spp. in effluents of different hospitals sewage in Biratnagar, Nepal. BMC Research Notes, v. 12, n. 641, 2019.

MALHOTRA-KUMAR, S.; XAVIER, B. B.; DAS, A. J.; LAMMENS, C.; BUTAYE, P.; GOOSSENS, H. Colistin resistance gene mcr-1 harboured on a multidrug resistant plasmid. Lancet Infectious Diseases, v. 16, p. 283–284; 2016.

MARSHALL, B. M.; LEVY, S. B. Food Animals and Antimicrobials: Impacts on Human Health. Clinical Microbiology Reviews, p. 718–733, 2011.

MARTINEZ, J. L. Environmental pollution by antibiotics and by antibiotic resistance determinats. Environmental Pollution, Barking, v. 157, p. 2893-2902, 2009.

MENG, H.; ZHANG, Z.; CHEN, M.; SU, Y.; LI, L.; MIYOSHI, S.I.; YAN, H.; SHI, L. Characterization and horizontal transfer of class 1 integrons in Salmonella strains isolated from food products of animal origin. International Journal of Food Microbiology, v. 149, p. 274-277, 2011.

MINNITI, G.; HAGEN, L. H.; PORCELLATO, D.; JØRGENSEN, S. M. The Skin-Mucus Microbial Community of Farmed Atlantic Salmon (Salmo salar). Frontiers Microbiology, v. 8, n. 2043, 2017.

MODAIHSH, A.; AL-SWAILEM, M.; MAHJOUB, M. Heavy metal contents of commercial inorganic fertilizer used in the Kingdom of Saudi Arabia. Agricultural and Marine Sciences, v. 9, p. 21–25, 2004.

NEELA, F. A.; BANU, N. A.; RAHMAN, A.; HABIBUR RAHMAN; ALAM, M. F. Occurrence of Antibiotic Resistant Bacteria in Pond Water Associated with Integrated Poultry-Fish Farming in Bangladesh. Sains Malaysiana, v. 44, n. 3, p. 371–377, 2015.

NELSON, D. W.; MOORE, J. E.; RAO, J. R. Antimicrobial resistance (AMR): significance to food quality and safety. Food Quality and Safety, v. 3, p. 15–22, 2019.

OZAKTAS, T.; TASKIN, B.; GOZEN, A. G. High level multiple antibiotic resistance among fish surface associated bacterial populations in non-aquaculture freshwater environment. Water Research, v. 46, p. 6382 - 6390, 2012.

POSADA-PERLAZA, C. E.; RAMÍREZ-ROJAS, A.; PORRAS, P.; ADU-OPPONG, B.; BOTERO-COY, A.; HERNÁNDEZ, F.; ANZOLA, J. M.; DÍAZ, L. DANTAS, G.; REYES, A.; ZAMBRANO. M. M. Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes. Scientific Reports, v. 9, n. 11764, 2019.

RAKERS, S.; NIKLASSON, L.; STEINHAGEN, D.; KRUSE, C.; SCHAUBER, J.; SUNDELL, K.; PAUS, R. Antimicrobial peptides (AMPs) from fish epidermis: perspectives for investigative dermatology. Journal of Investigative Dermatology, v. 133, p. 1140–1149, 2013.

RAMALHO, E. E.; MACEDO, J.; VIEIRA, T. M.; VALSECCHI, J.; CALVIMONTES, J. Ciclo hidrológico nos ambientes de várzea da Reserva de Desenvolvimento Sustentável Mamirauá – médio rio Solimões, período de 1990 a 2008. Uakari, v. 5, p. 61-87, 2009.

ROGALSKI, M. A.; GOWLER, C. D.; SHAW, C. L.; HUFBAUER, R. A.; DUFFY, M. A.. Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems. Philosophical Transactions Royal Society B, 372: 20160043. 2017.

SABIHA-JAVIED; MEHMOOD, T.; CHAUDHRY, M. M.; TUFAI, M.; IRFAN, N. Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal, v. 91, p. 94–99, 2009.

SUN, J.; ZHANG, X.; GAO, X.; JIANG. Q.; WEN, Y.; LIN, L. Characterization of Virulence Properties of Aeromonas veronii Isolated from Diseased Gibel Carp (Carassius gibelio). International Journal of Molecular Sciences, v 17, p. 496, 2016.

SYLVAIN, F-É.; CHEAIB, B.; LLEWELLYN, M.; CORREIA, T. G.; FAGUNDES, D. B.; VAL, A. L.; DEROME, N. pH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui (Colossoma macropomum). Scientific Report, v. 6, n. 32032, 2016.

SYLVAIN, F-É.; DEROME, N. Vertically and horizontally transmitted microbial symbionts shape the gut microbiota ontogenesis of a skin-mucus feeding discus fish progeny. Scientific Reports, v. 7, n. 5263, 2017.

TIAMIYU, A. M.; SOLADOYE, M. O.; ADEGBOYEGA, T. T.; ADETONA, M. O. Occurrence and antibiotic sensitivity of bacterial strains Isolated from Nile Tilapia, Oreochromis niloticus obtained in Ibadan, Southwest Nigeria. Journal of Biosciences and Medicines, v. 3, p 19-26, 2015.

USUI, M.; TAGAKI, C.; FUKUDA, A.; OKUBO, T.; BOONLA, C.; SUZUKI, S.; SEKI, K.; TAKADA, H.; TAMURA, Y. Use of Aeromonas spp. as General Indicators of Antimicrobial Susceptibility among Bacteria in Aquatic Environments in Thailand. Frontiers in Microbiology, v. 7, n. 710, 2016.

VAN, T. T. H.; NGUYEN, H. N. K.; SMOOKER, P. M.; COLOE, P. J. The antibiotic resistance characteristics of non-typhoidal Salmonella enterica isolated from food-producing animals, retail meat and humans in South East Asia. International Journal of Food Microbiology, v. 154, p. 98–106, 2012.

VERRAES, C.; BOXSTAEL, S. V.; MEERVENNE, E. V.; COILLIE, E. V.; BUTAYE, P.; CATRY, B.; SCHAETZEN, M-A.; HUFFEL, X. V.; IMBERECHTS, H.; DIERICK, K.; DAUBE, G.; SAEGERMAN, C.; BLOCK, J.; DEWULF, J.; HERMAN, L. Antimicrobial Resistance in the Food Chain: A Review. International Journal of Environmental Research and Public Health, v. 10, p. 2643-2669, 2013.

WANG, K.; YE, K.; ZHU, Y.; HUANG, Y.; WANG, G.; WANG, H.; ZHOU, G. Prevalence, antimicrobial resistance and genetic diversity of Listeria monocytogenes solated from chilled pork in Nanjing, China. LWT - Food Science and Technology. v. 64, p. 905 - 910, 2015.

WANNAPRASAT, W.; PADUNGTOD, P.; CHUANCHUEN, R. Class 1 integrons and virulence genes in Salmonella enterica isolates from pork and humans. International Journal of Antimicrobial Agents. v. 37, p. 457–461, 2011.

YIN, Q.; YUE, D.; PENG, Y.; LIU, Y.; XIAO, L. Occurrence and Distribution of Antibiotic-resistant Bacteria and Transfer of Resistance Genes in Lake Taihu. Microbes and Environments, v. 28, n. 4, p. 479–486, 2013.

Downloads

Published

2021-01-26

How to Cite

Fernandes, G. do S. T., Abreu, J. O., Carvalho, F. C. T. de, & Sousa, O. V. (2021). Antibiotic resistance in the superficial mucosa microbiota in an Amazonian fish, mapará (Hypophthalmus spp.) / Resistência a antibióticos na microbiota do muco superficial em peixe amazônico, mapará (Hypophthalmus spp.). Brazilian Journal of Development, 7(1), 10178–10195. https://doi.org/10.34117/bjdv7n1-690

Issue

Section

Original Papers