Effect of pH and temperature on hydration kinetics of barley grain / Efeito do pH e da temperatura na cinética de hidratação de grãos de cevada


  • Eduardo Thiago Slomp
  • Tuany Gabriela Hoffmann
  • Daniela Remonatto
  • Sávio Leandro Bertoli
  • Marcela Kotsuka da Silva
  • Carolina Krebs de Souza




barley, hydration process, transport phenomena, absorption, malting.


Hydration of barley grains consists of increase moisture content and plays a pivotal process of germination in malting. The objective of this work is to analyze the effect of temperature (20 to 30 °C) and pH (5 to 9) in the hydration process of barley grain from BRS Cauê cultivar. For this purpose, previous physicochemical and physiological analyses were performed on the barley grain to verify the grain quality. The water transport process during hydration were monitored by moisture content and loss of solids. The results showed that temperature had a significant statistical effect (p < 0.05) on the hydration time, where higher temperature provided faster hydration of the barley grains. On the other hand, results obtained with pH variation showed no significant statistical effect (p < 0.05) on the hydration time. Furthermore, the hydration kinetics of the barley grains was better described using a Peleg Model than a first-order kinetic model. Overall, results support the concept that temperature influences in barley hydration.


Boulton, C.; Quain, D.: Brewing yeast and fermentation, Oxford: Blackwell, 2006.

Kunze, W.; Manger, H.: Technology Brewing and Malting (3rd edn.). Berlin: Versuchs- und Lehranstalt für Brauerei, 2004.

Montanuci, F. D.; Jorge, L. M. M.; Jorge, R. M. M.: Effect of time and temperature on the hydration process of barley grains, International Journal of Heat and Mass Transfer, 51 (2015), pp. 363-372.

Miano, A. C.; Augusto, P. E. D.: The Hydration of Grains: A Critical Review from Description of Phenomena to Process Improvements. Comprehensive Reviews in Food Science and Food Safety, 17 (2018), pp. 352-370.

Basunia, M. A.; Abe, T.: Adsorption isotherms of barley at low and high temperatures, Journal of food engineering, v. (2005), pp. 129-136.

Montanuci, F. D.; Perussello, C. A.; Jorge, L. M. M.; Jorge, R. M. M.: Experimental analysis and finite element simulation of the hydration process of barley grains, Journal Food Engineering, 131 (2014), pp. 44-49.

Haladjian, N.; Fayad, R.; Toufeili, I.; Shadarevian, S.; Sidahmed, M.; Baydoun, E.; Karwe, M.: pH, temperature and hydration kinetics of faba beans (Viciafaba L.). Journal Food Processing and Preservation, 27 (2013), pp. 9-20.

Briggs, D. E.; Kelly, L.: Barley maturity and the effects of steep aeration on malting, Journal of Institute Brewing, 98 (1992), pp. 329-334.

Association of Official Analytical Chemists (AOAC) (2005). Official methods of analysis of AOAC (18rd edn.). Arlington, VA: AOAC.

Peleg., M.: An empirical model for the description of moisture sorption curves, Journal Food Science, 53 (1988), pp. 1216-1217.

Gowen, A.; Abu-ghannam, N.; Frias. J.; Oliveira, J.: Influence of pre-blanching on the water absorption kinetics of soybeans, Journal Food Engineering, 78 (2007), 965–971.

Maskan, M.: Effect of maturation and processing on water uptake characteristics of Wheat, Journal Food Engineering, 47 (2001), pp. 51-57.

Guarienti, M.: Qualidade industrial do trigo (2rd edn.), Passo Fundo: Embrapa, 1996.

Sopade, P. A.; Ajisegiri, E. S.; Badau, M. H.: The use of Peleg’s equation to model water absorption in some cereals grain during soaking, Journal Food Engineering, 15 (1992), pp.269-283.

Yokoyama, L. P.; Igreja, A. C. M.: Principais lavouras da região Centro-Oeste: variações no período 1975-1987, Pesquisa Agropecuária Brasileira, 27 (1992), pp. 727-736.

Montanuci, F. D.; Jorge, L. M. M.; Jorge, R. M. M.: Kinetic, thermodynamic properties, and optimization of barley hydration, Food Science Technology, 33 (2013), pp. 690-698.

Fujita, A.H.; Figueroa, M. O. R.: Composição centesimal e teor de b-glucanas em cereais e derivados, Ciência e Tecnologia de Alimentos, 23 (2003), pp. 116–120.

Bamforth, C. W.; Barclay, A. H. P.: Malting technology and the uses of malt, Barley: Chemistry and Technology, 1993.

Proudlove, M. O.; Baxter, D.: The structure of barley endosperm - an important determinant of malt modification, Journal of the Science of Food and Agriculture, 79 (1999), pp. 37-46.

Fran?áková, H.; Líšková, M.: Dormancy of malting barley in relation to physiological parameters of barley grain, Acta Fytotechnica et Zootechnica, 12 (2009), pp. 20–23.

Kunze, W.: Technology Brewing and Malting (2rd edn.). Berlin: Versuchs- und Lehranstalt für Brauerei, 1999.

Quast, D. G.; Silva, S. D.: Temperature dependence of hydration rate and effect of hydration on the cooking rate of dry legumes, Journal Food Science, 42 (1977), pp. 1299–1303.

Kon, S.: Effect of soaking temperature on cooking and nutritional quality of beans, Journal Food Science, 44 (1979), pp. 1329-1334.

Sopade, P. A.; Obekpa, J. A.: Modelling water-absorption in soybean, cowpea and peanuts at three temperatures using Peleg equation, Journal Food Science, 55 (1990), pp. 1084-1087.

Hung, T. V.; Liu, L. H.; Black, R. G.; Trewhella, M. A.: Water absorption in chickpea and field pea cultivars using the Peleg model, Journal Food Science, 58 (1993), pp. 848–852.

Seyhan-gürtas, F.; Ak, M. M.; Evranuz, E. O.: Water diffusion coefficients of selected legumes grown in turk as affected by temperature and variety, Turkish Journal of Agriculture and Forestry, 25 (2001), pp. 297-304.

Maskan. M.: Effect of processing on hydration kinetics of three wheat products of the same variety, Journal Food Engineering, 52 (2002), pp. 337–341.

Hsu, K. H.: A diffusion model with a concentration-dependent diffusion coefficient for describing water movement in legumes during soaking, Journal Food Science, 48 (1983), pp. 618-622.

Mayer, A. M.; Evenari, M.: The Activity of organic acids as germination inhibitors and its relation to pH, Journal of Experimental Botany, 4 (1953), pp. 257-263.

Bayram, M.; Kaya, A.; Oner, M. D.: Changes in properties of soaking water during production of soy-bulgur, Journal Food Engineering, 61 (2004), pp. 221-230.

Brookes, P. A.; Lovett, D. A.; Macwilliam, J.C.: The steeping of barley. review of the metabolic consequences of water uptake, and their practical implications, Journal of Institute Brewing, 82 (1976), pp. 14-26.

Borges, C. W. C.; Jorge, L. M. M.; Jorge, R. M. M.: Kinetic modeling and thermodynamic properties of soybean cultivar (BRS257) during hydration process, Journal Food Process Engineering, 40 (2017), pp. 1-8.

Marques, B. C.; Jorge, L. M. M.; Jorge, R. M. M.: Hydration kinetics, physicochemical composition, and textural changes of transgenic corn kernels of flint, semi-flint, and dent varieties, Food Science and Technology, 34 (2014), pp. 88-93.

Khazaei, J.; Mohammadi, N.: Effect of temperature on hydration kinetics of sesame seeds (Sesamum indicum L.), Journal Food Engineering, 91 (2009), pp. 542-552.

Resio, A. C.; Aguerre, R. J.; Suarez, C.: Hydration kinetics of amaranth grain, Journal Food Engineering, 72 (2006), pp. 247–253



How to Cite

Slomp, E. T., Hoffmann, T. G., Remonatto, D., Bertoli, S. L., Silva, M. K. da, & Souza, C. K. de. (2020). Effect of pH and temperature on hydration kinetics of barley grain / Efeito do pH e da temperatura na cinética de hidratação de grãos de cevada. Brazilian Journal of Development, 6(8), 61433–61445. https://doi.org/10.34117/bjdv6n8-532



Original Papers