Thermal Conductivity of Sintered Capillary Structures for Heat Pipes / Condutividade Térmica de Estruturas Capilares Sinterizadas para Tubos de Calor


  • Guilherme Antonio Bartmeyer Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Luis Vitório Gulineli Fachini
  • Larissa Krambeck
  • Davi Fusão
  • Thiago Antonini Alves



Capillary Structure, Heat Pipe, Sintered Copper Powder, Thermal Conductivi.


The heat pipes basically consist of a metal tube sealed with a capillary structure internally that is embedded with a working fluid. In heat pipes, the most important properties to be characterized are those related to pore structure and thermal conductivity, as they are responsible for capillary pumping and heat transfer, respectively. In this research, an experimental evaluation of the thermal conductivity of a sintered copper powder structure was performed, which can be used as a capillary structure in heat pipes. An experimental workbench based on the guarded-hot-plate principle was developed to determinate the effective thermal conductivity of the capillary structure of sintered copper powder. The average effective thermal conductivity of the capillary structure was 15.13 W/mK, which are approximated to the theoretical value for this structure.


D. A. Reay, P. A. Kew, R. J. McGlen, Heat Pipe: Theory, Design and Applications (Butterworth-Heinemann, 2014).

P. H. D. Santos, L. Krambeck, T. Antonini Alves, Experimental Analysis of a Stainless Steel

Heat Pipe, International Journal of Science and Advanced Technology, Vol. 4, pp. 17-22, 2014.

X. Wang, Y. Tang, P. Chen, Investigation into Performance of a Heat Pipe with Micro Grooves Fabricated by Extrusion-Ploughing Process, Energy Conversion and Management, Vol. 50, pp. 1384-1388, 2009.

R. M. German, Porous Metallurgy Science (2nd edition, Princeton, N.J.: Metal Powder Industries Federation, 1994).

M. Khalili, M. B. Shafili, Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe, Applied Thermal Engineering, Vol. 94, pp. 59-75, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220: Desempenho térmico de edificações. Rio de Janeiro: ABNT, 2003. 8 p.

G. A. Bartmeyer, L. Krambeck, R. C. Silva, D. Fusão, T. Antonini Alves, Characterization of a Copper Power for Heat Pipe Wicks, International Journal of Advanced Engineering Research and Science (ISSN: 2349-6495(P) | 2456-1908(O)), Vol. 5, n. 10, pp.52-54, 2018.

N. Atabaki, B. R. Baliga, Effective Thermal Conductivity of Water-Saturated Sintered Powder-Metal Plates, Heat and Mass Transfer, Vol. 44, n. 1, pp. 85-99, 2007.

J. P. F. Mera, Análise da transferência de calor em meios de porosidade variável para tubos de calor, M.Sc. dissertation, Dept. Mech. Eng., Universidade Federal de Santa Catarina, Florianópolis, SC, 2011.




How to Cite

Bartmeyer, G. A., Fachini, L. V. G., Krambeck, L., Fusão, D., & Alves, T. A. (2020). Thermal Conductivity of Sintered Capillary Structures for Heat Pipes / Condutividade Térmica de Estruturas Capilares Sinterizadas para Tubos de Calor. Brazilian Journal of Development, 6(8), 57375–57381.



Original Papers