Biotransformation of volatile compounds of the leaves of Schinus terebinthifolius by caterpillar Automeris Hubner / Biotransformação de compostos voláteis das folhas de Schinus terebinthifolius por lagarta Automeris Hubner

Authors

  • Pedro Henrique Ribeiro Lopes Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Jean Parcelli Costa do Vale
  • Tigressa Helena Soares Rodrigues
  • Paulo Nogueira Bandeira
  • Hélcio Silva dos Santos
  • Jane Eire Silva Alencar de Menezes

DOI:

https://doi.org/10.34117/bjdv6n8-135

Keywords:

Schinus terebinthifolius, Biotransformation, Automeris sp

Abstract

Aromatic plants are rich in essential oils composed mainly of terpenoids, which have great pharmacological potential. Generally, S. terebinthifolius trees are preyed upon by a species of caterpillar known as Automeris Hubner. The volatile compounds present in the hexane extract of their feces were identified and quantified. Twenty compounds (98.83%), 7 monoterpenes (83.02%) and 13 sesquiterpenes (15.81%) were identified. The main constituents of essential oil in feces are the monoterpenes Perillal (34.51%), D-Limonene (23.31%) and trans-Shisool (20.96%). The comparison of the volatile composition of the leaves and feces revealed that some constituents present in the leaves were identified in the feces in lower or higher concentrations than in the feces, such as the ?-3-Carene monoterpenes, whose percentage values were reduced from 27.80 % (leaves) to 0.41% (feces) and D-limonene whose concentration increased significantly in leaves (2.23%) compared to feces (23.31%). Analysis of the biosynthetic pathway of most terpenoid hydrocarbons showed that constituents such as ?-Pinene, D-Limonene and Germacrene D present in the essential oil of the leaves were biotransformed by the caterpillar Automeris Hubner in the monoterpenes: Myrtenol, Perillal and trans-Shisool and in the sesquiterpenes: Aromadendrene, ?-Selinene, Valencene, ?-Cadinene, ?-Cadinene, ?-Cadinene and ?-Eudesmol.

References

Schwob, I.; Bessiere, J. M.; Masotti, V.; Viano, J. Changes in essential oil composition in Saint John's wort (Hypericum perforatum L.) aerial parts during its phenological cycle. Biochemical Systematics and Ecology 2004, 32, 735.

Angelopoulou, D.; Demetzos, C.; Perdetzoglou, D. Diurnal and seasonal variation of the essen-tial oil labdanes and clerodanes from Cistus monspe-liensis L. leaves. Biochemical Systematics and Ecology 2002, 30,189.

Palá-Paúl, J.; Pérez-Alonso, M. J.; Velasco-Negueruela, A.; Palá-Paúl, R.; Sanz, J.; Conejero, F. Seasonal variation in chemical constituents of Santolina rosmarinifolia L. ssp. Rosmarinifolia. Biochemical Systematics and Ecology 2001, 29, 663.

Carlos Arthur Gouveia Veloso, Pedro Henrique Sette de Souza, Fernanda Pontes Nóbrega, Ana Cláudia Dantas de Medeiros, Ivana Maria Fechine, José Iranildo Miranda de Melo, Josean Fechine Tavares, Marcelo Sobral da Silva, Vicente Carlos de Oliveira Costa. Composição química do óleo essencial de Varronia dardani (Taroda) J.S. Mill e sua atividade antibiofilme. Braz. J. of Develop., Curitiba, v. 6, n. 3, p. 12887-12898 mar. 2020.

François, A.; Laffray, S.; Pizzoccaro, A.; Eschalier, A.; Bourinet, E. T-type calcium channels in chronic pain mouse models and specific blocers, Pflugers. European Journal of Physiology 2014, 466, 707.

Silva, P. T.; Azevedo, F. R. P.; Dias, F. M. F.; Lima, M. C. L.; Rodrigues, T. H. S.; Souza, E. B.; Bandeira, P.N.; Santos, H. S. Composição Química do Óleo Essencial Extraído das Folhas dos Indivíduos Macho e Fêmea e Frutos de Schinus terebenthifolius. Revista Virtual Química 2019,11,180.

Onoja, S. O.; Ezeja, M. I.; Omeh, Y. N.; Onwukwe, B. C. Antioxidant, anti-inflammatory and antinociceptive activities of methanolic extract of Justicia secunda Vahl leaf. Alexandria Journal of Medicine 2017, 53, 207.

Gatehouse, J. A. Plant resistance towardsinsect herbivore: a dynamic interaction. New Phytologist 2002, 156, 145.

Mello, M. O.; Silva-Filho, M. C. Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Brasilian Journal of plant physiology 2002, 14, 71-81.

Barreto, J. R. S.; Silva, G. H. Estudo da interação química entre aroeira e lagarta predadora. Parte 1: Avaliação do teor de ácido gálico nas folhas de Schinus terebinthifolius Raddi (aroeira) e fezes da lagarta Automeris sp. 65ª Reunião Anual da Sociedade Brasileira para o Progresso da Ciência (SBPC) 2013.

Adams RP. Identification of Essential Oil Components by Gas Chromatogra- phy/Quadrupole Massa Spectroscopy. US (United States): Allured Publ Corp Carol Stream, IL, USA, 2017.

Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Inhibitory effects of selected plant essentialoils on the growth of four pathogenic bacteria: E. coli O157:H7,

Salmonella Typhimurium, Staphylococcus aureus and Listeria

monocytogenes. Food Control 2007, 8, 414.

Gobbo-neto, L.; Lopes, N. P. Plantas medicinais:

fatores de influência no conteúdo de metabólitos secundários.

Química Nova 2007, 30, 374.

Solórzano-Santos, F.; Miranda-Novales, M. G. Essential oils from aromatic herbs as antimicrobial agents. Current Opinion in Biotechnology 2012, 23, 136.

Diabate, S.; Deletre, E.; Murungi, L. K.; Fiaboe, K. K. M.; Subramanian, S.; Wesonga, J.; Martin, T. Behavioural responses of bean flower thrips (Megalurothrips sjostedti) to vegetative and floral volatiles from different cowpea cultivars. Chemoecology 2019, 29, 73.

Vattekkatte, A.; Garms, S.; Brandt, W.; Boland, W. Enhanced structural diversity in terpenoid biosynthesis: enzymes, substrates and cofactors. Organic & Biomolecular Chemistry 2018, 16, 348.

Bhatti, H. N.; Khan, S. S.; Khan, A.; Rani, M.; Ahmad, V. U.; Choudhary, M. I. Biotransformation of monoterpenoids and their antimicrobial activities. Phytomedicine 2014, 21, 597.

Vihakas, M.; Gómez, I.; Karonen, M.; Petri, T.; Ilari, S.; Juha-Pekka, S. Phenolic Compounds and Their Fates In Tropical Lepidopteran Larvae: Modifications In Alkaline Conditions. Journal of Chemical Ecology 2015, 41, 822.

Reymond, P.; Weber, H.; Damond, M.; Farmer, E. E. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell 2000,12,707.

Korth, K. L.; Dixon, R. A. Evidence for Chewing Insect-Specific Molecular Events Distinct from a General Wound Response in Leaves. Plant Physiology 1997, 115, 1299.

Neuvonen, S.; Haukioja, E.; Molarius, A. Delayed inducible resistance against a leaf-chewing insect in four deciduous tree species Oecologia 1987, 74, 363.

Mathieu, F.; Malosse, C.; Frérot, B. Identification of the Volatile Components Released by Fresh Coffee Berries at Different Stages of Ripeness. Journal of Agricultural and Food Chemistry 1998, 46, 1106.

Downloads

Published

2020-08-12

How to Cite

Lopes, P. H. R., Vale, J. P. C. do, Rodrigues, T. H. S., Bandeira, P. N., Santos, H. S. dos, & Menezes, J. E. S. A. de. (2020). Biotransformation of volatile compounds of the leaves of Schinus terebinthifolius by caterpillar Automeris Hubner / Biotransformação de compostos voláteis das folhas de Schinus terebinthifolius por lagarta Automeris Hubner. Brazilian Journal of Development, 6(8), 56053–56063. https://doi.org/10.34117/bjdv6n8-135

Issue

Section

Original Papers