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ABSTRACT

We study p-biharmonic problems dealing with concave-convex nonlinearitiesin the
critical case with both Navier and Dirichlet boundary conditions in a bounded,
smooth domain and some f € C(L2), which is either a positive or a change-sign
function. By applying Nehari’s minimization method, we prove the existence of two
nontrivial solutions for the problems. If T is positive, both solutions of the problem
with Navier boundary condition are positive.

Keywords: p-biharmonic operator, Navier and Dirichlet boundary conditions,
concave-convex nonlinearities, critical growth.

RESUMO

Estudamos problemas p-biharmonicos que lidam com ndo-linearidades codncavo-
convexas no caso critico, tanto com Navier como com Dirichlet em condigdes de fronteira
num dominio delimitado e suave e alguns f € C (Q), que é ou uma fungéo positiva ou uma
funcdo de sinal de mudanca. Ao aplicar o método de minimizacdo de Nehari, provamos
a existéncia de duas solucdes ndo triviais para os problemas. Se f for positivo, ambas as
solugdes do problema com a condicéo de limite de Navier sdo positivas.

Palavras-chave: operador p-biharmonic, condig¢Ges de limite de Navier e Dirichlet, ndo-
linearidades concavo-convexas, crescimento critico
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1. Introduction

In this work we study the following fourth-order problems

AZu = A(|AulP2Au) = Af(z)|u|*Pu + [ul” 2u in O
(j 1
I on 99, (1)
on

and

2 . —2 o —2 -_2 .
Alu = A(|Au/P?Au) = Af (x)|ul"u + [u["u in 53'.._ @)
u=Au=10 on M),

*The authors were supported in part by CNPq and FAPEMIG, Brazil.
*Corresponding anthor
Email addresses: hamilton@mat.ufmg.br (H. Bueno), leandro.leme@ufop.edu.br
(L. Paes-Leme), xhelder@mat .ufmg. br (H.C. Rodrigues)

where €2 € B" is a bounded, smooth domain. We suppose that the exponents
p and g are such that 1 < p < oo, N = 2p, 1 < g < p, and that p* =
T‘E—p denotes the Sobolev critical exponent for fourth-order problems. The
parameter A is positive and f : {1 — R is either a positive or a changing-sign
function.

The study of critical growth in semilinear and quasilinear problems are a
major subject of study, since the seminal work of Brézis and Nirenberg [4].
See also [7] and [8] and references therein.

The p-hiharmonic operator .&g has recently attracted the attention of
many researchers (see [1], [2], [5], [12], [13], [17] and references therein).
Looking for positive solutions w, v > () defined in a bounded, smooth domain
1, problem (2), it is sometimes associated with Hamiltonian systems with
Dirichlet boundary conditions (see [11]).

When p = 2, the biharmonic operator frequently appears in Navier-Stokes
equations as a viscosity coefficient, but was also used to describe the failure
of the Tacoma Narrows bridge, see [16]. The biharmonic equation A%u = ()
appears in quantum mechanics and also in the theory of linear elasticity
modelling Stokes’ flows.

Existence of positive solution for semilinear biharmonic and p-biharmonic
problems in a smooth, bounded domain @ C REY with Navier boundary
conditions are extensively studied (see [3, 17]). while a series of works proving
existence of solutions for problem (2) is also available, see [3] and [6].

This is not the case of p-biharmonic operators: results about existence of
solutions are mostly restricted to Steklov and Navier boundary conditions,
see [13] and [17]; existence and multiplicity of solutions for problems with
Dirichlet boundary conditions in bounded. smooth domains are not so com-
mon.

The main motivation for the present work comes from Bernis, Garcia-
Azorero and Peral [3], who in 1996 studied the following problems for the
biharmonic operator,
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Ay = Aul*2u+ |u* 2u in 1
du

u=—=1 on €},

in

A= Aul*?u+ |[ul* 2u in £
u=Au=10 on J€,

where 2 C B" is a bounded, smooth domain, A >0, 1 < g < 2e 2" = %
is the critical exponent of Sobolev for the biharmonic operator. The authors
proved results of existence and multiplicity by applying both the sub- and
supersolution method and Ljusternik-Schnirelmann theory. In particular,
they proved that the functionals associated with these problems satisfy a local
Palais-Smale condition. So, our study can be considered a generalization of
these results for the p-biharmonic operator.

Another motivation for this work is the article [12], where the existence
of two nontrivial solutions for (1) in the subcrifical case is proved, if A = 0
is small enough.

To handle problems (1) and (2) simultaneously, we apply a result by
Gazzola, Grunau and Sweers [9], which proves that the best constant for the
immersion W2#(€2) N W, *(}) < L*"(£1) equals the best constant for the
immersion W7*(€Q) < LF (12).

In this work we prove the existence of two nontrivial solution for problems
(1) and (2), if A is small enough. We state our main result:

Theorem 1. There exists Ay > 0 such that, for all A € (0,);), problems
(1) and (2) have two distinct nontrivial solutions. If [ is positive, the two
solutions of problem (2) are positive.

To obtain our result, we consider the “energy” functional

1 A 1 .
u) = — MulPdr — — o)|u|fdr — — ul® dx.
m)p@ | qu{}ll FLII (3)

In the case of problem (1), .J, is defined in W7 #(Q); in (2), J, is defined

in W2P(Q2) N W,*(2). So, let E = E(() stand for the space W,?(Q) or

the space W=P(02) N 1-1}-’”1”1(51], according to the problem we deal with, both

considered with the norm |[u|| = ||Aul|,, where || - ||, denotes the usnal norm

of LP(1). Critical points of .J, are weak solutions of problems (1) and (2).
From now on we denote by

S =inf{||lul| : u € E and |Ju|,- =1}
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the best constant for the Sobolev’s immersion of E into L¥". So, by definition,
[ull,» < S=YP||ull. When = RV the extremal function U(zx) attains the

constant S: ||[U]|,- = §77||U].

We consider, for each A = (), Nehari’s minimization problem:
my(Q) = inf{Jy(u) : u e Ny(Q)}.

where
Ny(@) = {u € B\ {0} : (J(u).u) =0}
We define

r(1) = Uh(a).) = ulP = A [ folalrds — [ fupa.

So, for each u € N,(1), we have

WAW.0) =plull = [ e - [ pan @)

(In order to guarantee that A,(€2) is really a manifold, is enough to have
1\ (u) # 0. See Lemma 2.)

Since the immersion of E into L* () is not compact, we apply P.L. Lions’
lemma (see [14]-[15]), which implies that .J, satisfies a local Palais-Smale (PS)
condition below the level %Sﬁ — D). (We denote by S the best constant
for the immersion of E into L* and 3 = }—:f—:q the constant D will be defined
later on.) In order to do that, we obtain estimates for m; (€2) and m; (€2),
see Lemmas 6 and 10.

In the subcritical case, Ji and Wang [12] considered a subset = C 02
where the weight function f is positive and found a solution for the auxiliary
problem

Alu = A(|Auf?Au) = |u|/"Pu in E,
_ Ju
~ dn

thus establishing the existence of a solution for the minimization problem

(5)

i

=0 on O=,

mo(Z) = inf Jy(u),

No(E)

where .Jy is the functional naturally associated with the problem and NH{E]
is the Nehari manifold related to =. This solution was used to prove that

my (§2) < 0.
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A similar approach is not possible to deal with m} (f1) in our case: the
solution of (5) is not available in the eritical case: when r = p* = &, we

P = 75
have

2 N
Jo(u) > ES’%, ¥ u € Np(Z)

and it turns out to be difficult to obtain compactness by applying the result
of Lions.

We overcome this issue by noting that the functional .J; has the mountain
pass geometry. So, although not finding a solution for problem (5) when
r=p° = *._sz information about the sign of mg(Z) was enough to guarantee
that

thus obtaining the aimed compactness.
In order to show that

2 N )
my (Q) < ?9% — D)

we applied the extremal function for the p-biharmonic operator, as in [17].
The outline of this article is as follows. In Section 2 we introduce the
framework of this problem and state some preliminary results. In Section 3,
applving Ekeland’s variational principle. we prove the existence of a Palais-
Smale sequence for the functional J. wvia implicit function theorem. In Sec-
tion 4 we prove a local Palais-Smale condition, by using the concentration-
compactness principle. Section 5 is devoted to the proof of our main result

(Thm. 1).

2. The Nehari manifold N, ({2)

We start proving that, for A small enough, N*(€2) = (). This fact implies
that A\(€2) is really a manifold.

Lemma 2. There erists Ay = 0 (depending on p.q, N and f) such that, for
all A € (0, A1), we have NY(2) = .

Proof. We start noting that, if u € N} (€2), then we have

f| |pd:r_

—p
el

A L f(z)|ul'dz =
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that is, for fixed g and p, the value A [, f(x)|u|%dz determines ||u|[, e |ul.
If 3=p"/(p*—q), it is true that

a2
Jth{IJIHI"ﬂhc < M fllsllulze < MlfllsS™ [[ull,

from what follows, for all u € N7(Q2),

1

el < [A = ) T %r’. (6)

We define I(u): E'\ {0} — B by

P i
Ii(u) = K(p®,q) (%) - ALf{J:HHFdI, (7)

. i
where K(p*,q) = (P—_E) (M)P “e Ae[0,00). It follows that Iy(u) =0

e AR i
for all u € NY(Q).
However, for all u € E\ {0}, by Sobolev inequality and (6)

. 1 _
L(u) = |u3 (ﬁ (p H?)E— g vl - J"||.i'r||y.a4) (8)
87 T =p]

||u||3-{ff{p* )= | (£ )Ilfll.ﬂﬁ_%]ﬁ-lllfllﬂ}-

Bv considering the function
=

I

K g
T (", Fj- A [( )Ilflla?‘i] ST
A
R

where A Is a positive constant, we observe that g(A) is decreasing for A = ()
and satisfies both g(A) — +00 when A — 0% and g(A) =+ —oco when A —

+nc. The constant
- q =g il
— p) S p||f||ﬂ P

“}"1 = I{{j’;‘ﬂq}% (P*
P
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is the unique positive solution of g(A;) = 0. Therefore, if there exists u €
NY(€2) for A € (0, A1), we would have g(A) > 0, thus contradicting I,(u) = 0.
O

Lemma 3. If u € N*(Q). then [, f(x)|ultdz > 0.

Proof. Follows from the definition. O

In the sequel we study extremal properties the real function
1 A 1 . .
Fs Jy(tu) = —7ull? — 240 f @) uftde — —¢» f " da,
P 9 Ja Iy 0

for t > 0 and any u € E, {0}.
We have

4 gtn) = o (i”“"”u”p—h ] F(@)|uftdz — 7" / |u|P‘dI),

from what follows that critical points of ¢ + Ji(fu) occur when the function

s(t) = "~ ju/” - / " dx

equals A fﬂ x)|u|%z, a value that does not depend on t.
The functmn s satisfies s(0) = 0 and lim,_, _ 5(#) = —oc. Its maximum is
attained at ty. (depending on u) given by

[ e-aglup 17
o= [y

and (see Figure 1)

E-g
() = ( (P —9)llul” )“ ”u”p_( (p — ) lul” ) : f P de
(p* —q) Jo [ul"dz (P* = q) Jq [u"d= 0
(9)
An estimate for s(fmax) is given by

'Ev.i_‘L * ., £=4

P—q\"*{p —p EN P -p
St ) = |[1]|? SF = (. 10
( ] ” ” (Pt ‘?) (Pt"?)( ) { ]

Figure 1: The graph of s{t) = t#~9|u|[f — 7" 9 fn |u|P"dzx is displayed, exhibiting the
unique point ¢~ =t tal que s(t; ) = A [, f(e)|u|fde, if [, f(z)|u)ddz < 0.

s(t)

a

Afffufie f == - o mm e mm e 4
o

Brazilian Journal of Development, Curitiba, v.7, n.7, p. 70324-70341 jul. 2021



Brazilian Journal of Development | 70331
ISSN: 2525-8761

- . — -L‘_._
Lemma 4. For 7 = ,:__q and A, = (M o (T_1 _q) S.c- :-~||_||F'||#1 there

p*—q
erists, for each fired u € EY\ {0} and A € (0, A2),
(¢) a unique t; (depending on u) such that t;u € N (). Furthermore,
t, = fmax and
Ju(t,u) = max Jy(tu).

t}tln'l.!.

If [, flx)|ul*dx = 0, there also erists

(i) a unique t] (depending on u) such that t7u € N (Q). Furthermore,
0 <tl <t and
Ju(tiu) = min Jy(tu).
0=t=<t,
Proof. Let us initially suppose that f f(x)|u|*dz < 0. Then there exists
a unique t; > t,,. such that s(f;) = A [, f(z)lul?dz. We clearly have
s'(t;) < 0. See Figure 1.
We claim that ¢, u € N, (€2). In fact, since (J)(f u),t u) = 0, we have
that t;u € N, (¢ ] But (W (t u), t;u) = (7)1 (t]) < ﬂ proves our claim.
Notice that —JA{tu] = 0 if, and only if + = 0 or t = ;. And that
%J;{iu]h:tu < () and we conclude that Jy(t;u) = max,.,, . Ju(tu). !
Suppose now that [, f(z)|u[*dz > 0. We claim that A [, f(z)|u|[tdr <
S(tmax), if 0 < A < Az. In fact, we have s(0) = 0 < A [, f(x)|u/%dr <

Allfllallulli < J‘n.||_,|"||,fz.’:3'_ﬂ ||u||* and the definition of A; guarantees that s(0) =

0 < AJ, f()|ultde < [u]s (%)H (2=2) (5 ; )% < 5(tmas). accord-
ing to (10).

So, there exist unique ¢} and t; such that s(t7) = A [, f(z)|ul%dx =
s(t,). such that 0 < ¢ < ¢, < t, and s'(t]) = 0 > s'(t]).

Since (Jy(t5u), tyu) =0 and (¢ (t;u), t;u) < 0, we conclude that t;u €
N, (). A similar argument shows that £} u € N (Q2). Notice that ¢] and ¢
are local extrema of ¢ ~+ Jy(tu). The derivative £.J)(fu) shows that I;.{tu]
is decreasing if 0 < t < ] and increasing if £ < { <t , we conclude that

Jy(thu) = UE:I:L? Jy(tu).

We conclude that J,(t u) = max Jy(tu) as in the case [, f(x)ul*dr <0,

I:fl.i}:

and we are done. O

Observe that, to apply Lemma 4(ii), we need that [, f(z)ul%dz > 0, a
conclusion that we can not infere from our hypotheses: the weight function
f might change sign so that [, f(x)|u|?dr < 0. So, we restrict our domain to
a subset of {2 where f is positive and consider the auxiliary problem {‘i] in
the case r = p*. This restriction aims to obtain an upper bound for m7 (£2)
(see Lemma 6).
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2.1. The restricted problem

Since f : {1 — R is contimious and change signs in €2, we have that
E={reQ: flzr) =0} #0

is an open set of B, so it has positive measure.
Therefore, we consider the functional Jy: Tfﬂ]?:p[E] — R defined by

1 1
Jo(u) = ; / | Au|Pdr — - f ul"" dx

and the minimization problem
m(Z) = inf{Jy(u) : u € NG(E)}.

where, as before, Nj(Z) = {u € WiP(E)\ {0} : (Ji(u),u) =0}.
The manifold Ny(Z) splits E(Z) \ {0} into two components:

Ca = {u € W)\ {0} : (Jo(w).w) >0}

and
Cy, = {u € WP(2)\ {0} : (Ji(u),u) < 0}.
Notice that if u € C,, then Jy(u) = 0; and if {J}(u), u) < 0 we have that
u € (. The geometry of the functional .J; implies that the component C, is

a neighborhood of the origin.
In order to prove that mg(Z) > 0 we define

o= inf max Jy(tu) and ¢:= inf max Jy(y(t)),
' weW2F(Z)\ {0} 120 o(tu) ~er tefo.1] o(7(1))

where I' = {y € C ([0, 1, W;*(Z)) : 4(0) =0, Jo(7(1)) < 0}.

By using the definition and standard arguments, we can show that

Lemma 5. mg(Z) =1 = ¢ = (.

We have obtained some properties and results about the Nehari manifold
N,(Q2). We have proved that, for each u # 0 fixed, extremal properties of
the functional Jy(tu) in Ny (£2). When restraining our study to the open set
Xi where f is positive, we have considered the minimization problem

mg(Z) = inf{Jy(u) : u € Np(Z)},

where Nj(Z) is the Nehari manifold associated to J;. The last result proves

that mg(Z) = 0. We now apply this result to obtain an upper bound to
+

m) (£2).

2.2, Back to the original problem

We observe that, for each u € W;*(Z) \ {0}, by defining « = 0 in 0\, =,
we obtain a function in E \ {0}, since u € W, #(€2) € (W?#(Q2) N W, *(£2)).
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Lemma 6. The following statements are true:

(i) there exists t > 0 such that

my () < mi(Q) < q;—p ({7 me(Z) <0, ¥ A€ (0,A);

(ii) J is eoercive and bounded from below in Ny(Q2) for any A € (0, A3).
Proof. For each u € W;?(Z)\ {0} c E\ {0}, we have

[ F(@)lultda = / f(@)lul*dz > 0.
0 =
Consider # as defined in Lemma 4 (i1). So, t}u € N (€2) and
FHye $H79 ol r* .
I(tiu) = u/ |&u|pd:r:—}n@/f{;r]|u|qdm— Q/ |ul" dx
PooJa 7 Jao v 0

= (u) £ [1/ | Au|Pdr — (q —p*) v f |u|”'d;r::| .
q P Jo q9-r/) P Ja

(p—q)||ul® ]ﬂ

Since f < tmax = [m

I(tru) < (?) ()7 E L | AufPdz — (‘L'_f;: ) “m‘f‘_p L |u|P'da-,].

from what follows

and u € N(Z), we conclude that

L(tru) <« L2 hemy () < o,
q
proving the first claim for =t
Since u € N,(Q2) guarantees that [, |AulPdr = A [, f(z)|u|%dz+ [, |u[* da
estimating .J,(u), by Young inequality we obtain

L > Z=P L |Aufrdz — A 155 ull¢

pp* aqp
Lo, . (P —a)p—1q) —2\73
> — (" = p) = Mo = )]l = A== (|75 F)

proving that Jy(u) is coercive in Ny(€2), for all X € (0, Az) where A3 = H
Note also that from A € (0, Az). follows

* — =B
B 2 AEZDLZ0) () g-2) 75 (1)
pap '
showing that .J, is bounded from below in N3(€2). O

We now obtain an estimate from below for m; (), if A € (0, A;), where

A; was defined in Lemma 2.
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Lemma 7. For A € (0, A1), the set N, () is closed.
Proof. If u € N, (1), we have

from what follows ||u||" ~* > (ﬁ) S%. Thus,

—g\TTF —g\FF
ul > (p ‘;’) ST = (p ‘?") S5, (12)
r—q P —q

an inequality valid for all u € N (£2).
Consider a sequence {u,} C ..'"u" o (€2) such that u, — u in E. It follows
from (12) that u € E\ {0}. The C" regularity of .Jy implies that

da(u) = (T} (), u) = O,
thus showing that u € N,((Q1). Since (v/)(u),u) is continuous, we have

(14 (), u) < 0. But N7(£2) = 0, if XA € (0, Ay), what implies that {17 (u), u) <
0, proving that u € N (Q). O

Lemma 8. There exists a constant C' > 0 such that, for all A € (0, A\y) we
have
m, () = C =0,
. —_— N
where A, = £ (£22) (H) Tl s

Zp \p*—q

Proof. It follows from (11) and (12) that

f|&u|pdr—
_— # N ]

> e (p 2) (& ‘f) st
PP P g

(Observe that A; was chosen to gnarantee that the bracket is positive.)

S0,
. =
Jy(u) = (l) (p p) (p q)p "sh =
2 P pr—q

Taking the infimum of .J)(u) for u € A, (1), we obtain

Jiu) = _%”“”q

m; () = C = 0. O
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We now aim to obtain an upper bound for m, (€2), which will be used
to prove the Palais-Smale condition in this level. The same proof is valid
in both spaces E = W;"(Q) and E = W2?(€2) N W, *(11), thanks to the
following result showed by Gazzola, Grunau and Sweers (veja [9, Thm.1, p.

2]).

Theorem 9. The best constant for the immersion W E’”{ﬂ] N W, P(Q) <
LP° () is equal to the best constant for the immersion W, P(ﬂ] — L (02).

Lemma 10. For any D = 0 there exists Ay = 0 (depending on f. p. q. {1}
and D)) such that, for all A € (0, A5), we have

oW .
m; (Q) < ?5% — D),

1 s — _L
where 3 =l

Proof. Take rq €  such that f(rq) > 0 and pg. 0 < pg < 1, such that
F>0in By (zs) C Q.
Again, we consideremos the functional .J;: E — R given by .Jy(u) =
jlj||u||” - pl—_ Joy [ul?" dz and a cut-off function n € C5°(£2) satisfying
n = 1 in B, ()
n = 0 out Bay,(rg)
0<p<1 and |Vp| <C.

For € > 0. consider

ue(z) = n(x)U (%) .

where UV is a radially symmetric minimizer of {Ilul } for u € E(RY) " {0}.
B*

The following estimates are true (see [17]):

7 J=2
(/ |u5|p'd:r) - F%ﬂ“ﬁ”i. + Ofe)
L

/|&1}.€|Pd:r: = E_N_PEE||U||P+U{1)
1

€ P'dm —
Jo luc| = = S +O0(e7), (13)
([ el dx)?
where Tl Ju?
] u
= S = il'_l_f .
IU]E ueB(®N)\ {0} [[ull5.

Define wg by up(z) = ue(x — xp). For A, B > 0, by applying the identity

J\.

24 te 2 AN\F

Hup(—ﬂ——*B)=—,( L) ’
t=0 \ P il N \ Bw
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to Jy(tuy) and also (13), we obtain

£ "
sup Joltug) = sup (—””ﬂ”p i / |uo
20 t=0 \ P P Jo

f"dy) (14)

2 N N =2
_ vsﬁ + 0T,

It follows from the definition of .J, and wu, that

A
sup Jy(tug) = sup (Jn{fun] —iq—/f|?1n|qdr)
q.Ja

t>tmax t>iman
A

2 N N-2
ST+ O(€7) = ()= f flul*dz  (15)
N Bpy (0)

Fal

B
For 0 < € < p}™", we estimate the integral in the last inequality:

f f
f|71s|qd~ff:/ A 2] ———dr = (4,
/;rmfm Bol0) (€ + |z[FT) " 4 Beo(0) (2p] )"0
(16)

where (') is a positive constant that does not depend on e.
Since 3 > 1, we can choose d > () such that, for all A € (0, ), we have

O(N) + DN — ) < 0, (17)

where I) is a positive constant and C'5 = ) will be chosen in the sequel.
N=2

No2p
We define AY = min{p," " ,§°} and ¢ = [AJ“]WPTF. If A € (0,A;), we can
substitute (16) and (17) into (15) to obtain
sup Jy(tug) < ES% + O(N) = oA,
£t N
where €, = {tnm]'i%}. Since (17) implies that O(A) — CoA < —DA?, we
conclude that

ey

2 N
sup Jy(tug) < T‘E'% — D). (18)

t>tmax
Lemma 4 proves the existence of t; > #,. > 0 such that £, u, € N (92)
and Jy(t, ug) = max;zy,,., Ja(tug). Thus, it follows from (18) that

s

2 N
mj () < Ji(ty,ue) = max Jy(tuo) < Ta% — D)

t>tmax

for A € (0, As). 0O

3. The local PS-condition via concentration-compactness principle

We now prove that the functional .Jy satisties the Palais-Smale condition
for levels below a certain constant.

Theorem 11. There erists a positive constant I such that all Palais-Smale
sequence {u,} C E for J, in the level ¢, has a strongly convergent subse-
quence, if

2 . 8
s ?S T — DN

4
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Proof. The sequence {u,} is bounded. In fact, for any § > 0, we have

: 1 1
c+d 2 J(un) = —{J(un), ta) + —{J (Un), tn}
p r

q
(1 _ l) f | A, |Pdx — A (l — l) ||f||55—3 (/ |.-iuu|'Pd;n)a
r ) Ja 9 r f

1 i
)l ([ 1wz (19

So, by supposing {u,} unbounded, we reach a contradiction with (19), since
1 < g < p. So, we suppose that

I

u, —u in E (20)

FAX T LT
A, | !

weakly-* in the sense of measures, (21)
| [P* — v

where g and » are bounded measures. It follows from Lions’ lemma (see
[14]-[15]) that (passing to subsequences if necessary)

[ Uy, +u in L") and ae. in Q, if 1<r<p’,

|Aug [P =% > |Aul’ + 3 i,
kel

|unF” =% v = |ulf” + ZM;EFI,‘-.
kel

(22)

# 1
Ly.i- Eru.i.-‘;-* 1

for some set I. finite or empty.

Enough to show that I = ). Supposing the contrary, fix & € I and define
P, € C(RY) such that

Y = 1 in B, (),

e = 0 out Bae(xz), (23)

2 2
(Vi < =, A £ <.
£ £2

Now, consider the bounded sequence given by {d.u,}, where ¢.(z) =
Ue(x)xalz). It follows that limg, a {J'(un), deu,) = 0, thus implying

Ti— 00

lim/|£\.uﬂ|p4ﬁun&{¢£un]d:: = A/f(r}|?i|q¢5df+]¢5du. (24)
L 0 1

Expanding the left side of the above equation and taking the limit when

€ — (), we have that v = .
£ .
It follows from Lions’ lemma, that pp = Sl and, since v, = 0, we

N
conclude that v > 5%
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Therefore,

= Jim (o) = tim L) - L3 )

= ﬂli_’II::‘LEinf{ (-——)ff )| un|*dz + (—— —)fluﬂlf’ d:r}
2 2 1
25t 2 [lrar—a(5-2) st ( f 1 dr)

We now define g(r) = k77" — Aryr?, for

2 1
K= e Hz=(a—-) £l 5

=3
The function g attains an absolute minimum for x = 0 at x5 = (fﬁ)P "

I

Thus.
9(x) > g(xo) = —DAF=
where .
D:Hg(ﬂ)p _H](hZQ)P = (.
PrEy PrEy
Therefore

2 N .
> Esﬁ — DAF

thus contradicting that ¢ < §% — DM, This means that I = () and the

proof is complete.

2
N

4. Proof of Theorem 1

Proposition 12. There erists A > 0 such that, for all A € (0, 1): the func-
tional Jy has a minimizer uf € N, () satisfying

(i) Jalug) = ma(2) = m;y (2):

(#2) uy is a eritical point for J,.
Proof. We define A = min{Ai, Az, Az} For all A € {U,I] according to
Lemma 6, we have m, () < 0. Decreasing A if necessary, we obtain

my () < 0 < %5% — DX, ¥ Ae(0,X).

By using Ekeland’s variational principle we obtain a Palais-Smale sequence in
the level m,(£2). The Theorem 11 ensure that there exists a sequence {u, } C
N, (€2) such that (passing to a subsequence if necessary) u, — ug in E. Since
Jy € C', we have

Jiug) =mp(Q) and Ji(ug) = 0.
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We now claim that uy € N, (£2). In fact, since m,(£2) < 0, we have
uy € EY\ {0}. Taking limits in the identity

{3 (tn), un) = / | Aty |Pdx — }.[ flx)|uq|'dx — [ lua["dz =0 (25)
1 1 1

we conclude that ugy € N, (Q2) = N7 () UN ().
We claim that [, f(z)|ug |%dz > 0. Supposing the contrary,

M) = = [ 1dupar =2 [ ffufiar — [
PJa q Jo 7 Jo
1 1 1 1 .
5 - (_ - _) .aff{xnumﬂdm n (_ - _) ] 7" der
q p o r ) Ja
Lo .
(— - —*) f lug | dz
P p 0

but Jy(w,) = m,y(£2) < 0, a contradiction. This proves the claimed.

Again by contradiction, suppose that u; € N, (). According to Lemma
4, there exist unique #; and ¢; such that t;u; € N (), tyuy € Ny (£2)
and 0 < f; < t; = 1. Since

d d?
E,f;l{t;uﬁ") =0 e E.h{f;uﬁ") = 0,
there exists # € 7, 5], such that J,(t7uy) < Jy(fug), from what follows
Itgug) < L(ug) < L(tgug) = Jalug) = my(Q)
and we have reached a contradiction. This proves (i) and (#1).
O
Since N, (€2) is closed, the proof of the next result is similar, but simpler:

Proposition 13. The exists A* = 0 such that, for all A € (0, X*), the fune-

tional .J, has a minimizer u; € Ny () such that

(1) Ja(ug ) =m; (92);

(#2) uy is a eritical point for J,.

We take Ay = min{A.A*} and the Theorem 1 is then obtained collecting

the results already proved.
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