

On p-biharmonic equations with critical growth

Sobre equações p-biharmónicas com crescimento crítico

DOI:10.34117/bjdv7n7-284

Recebimento dos originais: 12/06/2021 Aceitação para publicação: 12/07/2021

Leandro Correa Paes Leme

Doutor em Matemática Universidade Federal de Ouro Preto Departamento de matemática, Universidade Federal de Ouro Preto, Ouro Preto, Mg E-mail: leandro.leme@ufop.edu.br

Helder Candido Rodrigues

Doutor em Matemática Universidade Federal de Minas Gerais Departamento de matemática, Universidade Federal de Minas Gerais, Belo Horizonte, Mg E-mail: xhelder@mat.ufmg.br

Hamilton Prado Bueno

Doutor em Matemática Universidade Federal de Minas Gerais Departamento de matemática, Universidade Federal de Minas Gerais, Belo Horizonte, Mg E-mail: hamilton@mat.ufmg.br

ABSTRACT

We study p-biharmonic problems dealing with concave-convex nonlinearities in the critical case with both Navier and Dirichlet boundary conditions in a bounded, smooth domain and some $f \in C(\Omega)$, which is either a positive or a change-sign function. By applying Nehari's minimization method, we prove the existence of two nontrivial solutions for the problems. If f is positive, both solutions of the problem with Navier boundary condition are positive.

Keywords: p-biharmonic operator, Navier and Dirichlet boundary conditions, concave-convex nonlinearities, critical growth.

RESUMO

Estudamos problemas p-biharmónicos que lidam com não-linearidades côncavoconvexas no caso crítico, tanto com Navier como com Dirichlet em condições de fronteira num domínio delimitado e suave e alguns f \in C (Ω) , que é ou uma função positiva ou uma função de sinal de mudança. Ao aplicar o método de minimização de Nehari, provamos a existência de duas soluções não triviais para os problemas. Se f for positivo, ambas as soluções do problema com a condição de limite de Navier são positivas.

Palavras-chave: operador p-biharmonic, condições de limite de Navier e Dirichlet, nãolinearidades côncavo-convexas, crescimento crítico

1. Introduction

In this work we study the following fourth-order problems

$$\begin{cases} \Delta_p^2 u := \Delta(|\Delta u|^{p-2} \Delta u) = \lambda f(x) |u|^{q-2} u + |u|^{p^*-2} u & \text{in } \Omega, \\ u = \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega, \end{cases}$$
(1)

and

$$\begin{cases} \Delta_p^2 u := \Delta(|\Delta u|^{p-2} \Delta u) = \lambda f(x) |u|^{q-2} u + |u|^{p^*-2} u & \text{in } \Omega, \\ u = \Delta u = 0 & \text{on } \partial \Omega, \end{cases}$$
(2)

Email addresses: hamilton@mat.ufmg.br (H. Bueno), leandro.leme@ufop.edu.br (L. Paes-Leme), xhelder@mat.ufmg.br (H.C. Rodrigues)

where $\Omega \subset \mathbb{R}^N$ is a bounded, smooth domain. We suppose that the exponents p and q are such that 1 , <math>N > 2p, 1 < q < p, and that $p^* = \frac{Np}{N-2p}$ denotes the Sobolev critical exponent for fourth-order problems. The parameter λ is positive and $f: \overline{\Omega} \to \mathbb{R}$ is either a positive or a changing-sign function.

The study of critical growth in semilinear and quasilinear problems are a major subject of study, since the seminal work of Brézis and Nirenberg [4]. See also [7] and [8] and references therein.

The p-biharmonic operator Δ_p^2 has recently attracted the attention of many researchers (see [1], [2], [5], [12], [13], [17] and references therein). Looking for positive solutions u, v > 0 defined in a bounded, smooth domain Ω , problem (2), it is sometimes associated with Hamiltonian systems with Dirichlet boundary conditions (see [11]).

When p = 2, the biharmonic operator frequently appears in Navier-Stokes equations as a viscosity coefficient, but was also used to describe the failure of the Tacoma Narrows bridge, see [16]. The biharmonic equation $\Delta^2 u = 0$ appears in quantum mechanics and also in the theory of linear elasticity modelling Stokes' flows.

Existence of positive solution for semilinear biharmonic and p-biharmonic problems in a smooth, bounded domain $\Omega \subset \mathbb{R}^N$ with Navier boundary conditions are extensively studied (see [3, 17]), while a series of works proving existence of solutions for problem (2) is also available, see [3] and [6].

This is not the case of p-biharmonic operators: results about existence of solutions are mostly restricted to Steklov and Navier boundary conditions, see [13] and [17]; existence and multiplicity of solutions for problems with Dirichlet boundary conditions in bounded, smooth domains are not so common.

The main motivation for the present work comes from Bernis, García-Azorero and Peral [3], who in 1996 studied the following problems for the biharmonic operator,

^{*}The authors were supported in part by CNPq and FAPEMIG, Brazil.

^{*}Corresponding author

$$\begin{cases}
\Delta^{2}u = \lambda |u|^{q-2}u + |u|^{2^{*}-2}u & \text{in } \Omega, \\
u = \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega,
\end{cases}$$

and

$$\left\{ \begin{array}{ll} \Delta^2 u = \lambda |u|^{q-2} u + |u|^{2^*-2} u & \text{in} \quad \Omega, \\ u = \Delta u = 0 & \text{on} \quad \partial \Omega, \end{array} \right.$$

where $\Omega \subset \mathbb{R}^N$ is a bounded, smooth domain, $\lambda > 0$, 1 < q < 2 e $2^* = \frac{2N}{N-4}$ is the critical exponent of Sobolev for the biharmonic operator. The authors proved results of existence and multiplicity by applying both the sub- and supersolution method and Ljusternik-Schnirelmann theory. In particular, they proved that the functionals associated with these problems satisfy a local Palais-Smale condition. So, our study can be considered a generalization of these results for the p-biharmonic operator.

Another motivation for this work is the article [12], where the existence of two nontrivial solutions for (1) in the *subcritical case* is proved, if $\lambda > 0$ is small enough.

To handle problems (1) and (2) simultaneously, we apply a result by Gazzola, Grunau and Sweers [9], which proves that the best constant for the immersion $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \hookrightarrow L^{p^*}(\Omega)$ equals the best constant for the immersion $W^{2,p}_0(\Omega) \hookrightarrow L^{p^*}(\Omega)$.

In this work we prove the existence of two nontrivial solution for problems (1) and (2), if λ is small enough. We state our main result:

Theorem 1. There exists $\lambda_0 > 0$ such that, for all $\lambda \in (0, \lambda_0)$, problems (1) and (2) have two distinct nontrivial solutions. If f is positive, the two solutions of problem (2) are positive.

To obtain our result, we consider the "energy" functional

$$J_{\lambda}(u) = \frac{1}{p} \int_{\Omega} |\Delta u|^p dx - \frac{\lambda}{q} \int_{\Omega} f(x) |u|^q dx - \frac{1}{p^*} \int_{\Omega} |u|^{p^*} dx.$$
 (3)

In the case of problem (1), J_{λ} is defined in $W_0^{2,p}(\Omega)$; in (2), J_{λ} is defined in $W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$. So, let $\mathbf{E} = \mathbf{E}(\Omega)$ stand for the space $W_0^{2,p}(\Omega)$ or the space $W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$, according to the problem we deal with, both considered with the norm $||u|| = ||\Delta u||_p$, where $||\cdot||_p$ denotes the usual norm of $L^p(\Omega)$. Critical points of J_{λ} are weak solutions of problems (1) and (2).

From now on we denote by

$$S = \inf\{\|u\|^p : u \in \mathbf{E} \text{ and } \|u\|_{p^*} = 1\}$$

the best constant for the Sobolev's immersion of $\mathbf E$ into L^{p^*} . So, by definition, $\|u\|_{p^*} \leq S^{-1/p}\|u\|$. When $\Omega = \mathbb R^N$ the extremal function U(x) attains the constant S: $\|U\|_{p^*} = S^{-\frac{1}{p}}\|U\|$.

We consider, for each $\lambda > 0$, Nehari's minimization problem:

$$m_{\lambda}(\Omega) = \inf\{J_{\lambda}(u) : u \in \mathcal{N}_{\lambda}(\Omega)\},\$$

where

$$\mathcal{N}_{\lambda}(\Omega) = \{u \in \mathbf{E} \setminus \{0\} : \langle J'_{\lambda}(u), u \rangle = 0\}.$$

We define

$$\psi_{\lambda}(u) = \langle J_{\lambda}'(u), u \rangle = \|u\|^p - \lambda \int_{\Omega} f(x)|u|^q dx - \int_{\Omega} |u|^{p^*} dx.$$

So, for each $u \in \mathcal{N}_{\lambda}(\Omega)$, we have

$$\langle \psi_{\lambda}'(u), u \rangle = p \|u\|^p - q\lambda \int_{\Omega} f(x)|u|^q dx - p^* \int_{\Omega} |u|^{p^*} dx.$$
 (4)

(In order to guarantee that $\mathcal{N}_{\lambda}(\Omega)$ is really a manifold, is enough to have $\psi'_{\lambda}(u) \neq 0$. See Lemma 2.)

Since the immersion of \mathbf{E} into $L^{p^*}(\Omega)$ is not compact, we apply P.L. Lions' lemma (see [14]-[15]), which implies that J_{λ} satisfies a local Palais-Smale (PS) condition below the level $\frac{2}{N}S^{\frac{N}{2p}} - D\lambda^{\beta}$. (We denote by S the best constant for the immersion of \mathbf{E} into L^{p^*} and $\beta = \frac{p^*}{p^*-q}$; the constant D will be defined later on.) In order to do that, we obtain estimates for $m_{\lambda}^+(\Omega)$ and $m_{\lambda}^-(\Omega)$, see Lemmas 6 and 10.

In the subcritical case, Ji and Wang [12] considered a subset $\Xi \subset \Omega$ where the weight function f is positive and found a solution for the auxiliary problem

$$\begin{cases}
\Delta_p^2 u := \Delta(|\Delta u|^{p-2} \Delta u) = |u|^{r-2} u & \text{in } \Xi, \\
u = \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Xi,
\end{cases}$$
(5)

thus establishing the existence of a solution for the minimization problem

$$m_0(\Xi) = \inf_{N_0(\Xi)} J_0(u),$$

where J_0 is the functional naturally associated with the problem and $\mathcal{N}_0(\Xi)$ is the Nehari manifold related to Ξ . This solution was used to prove that $m_{\lambda}^+(\Omega) < 0$.

A similar approach is not possible to deal with $m_{\lambda}^{+}(\Omega)$ in our case: the solution of (5) is not available in the critical case: when $r = p^* = \frac{Np}{N-2p}$, we have

$$J_0(u) \ge \frac{2}{N} S^{\frac{N}{2p}}, \quad \forall \ u \in \mathcal{N}_0(\Xi)$$

and it turns out to be difficult to obtain compactness by applying the result of Lions.

We overcome this issue by noting that the functional J_0 has the mountain pass geometry. So, although not finding a solution for problem (5) when $r = p^* = \frac{Np}{N-2p}$, information about the sign of $m_0(\Xi)$ was enough to guarantee that

$$m_{\lambda}^{+}(\Omega) < 0 < \frac{2}{N}S^{\frac{N}{2p}} - D\lambda^{\beta},$$

thus obtaining the aimed compactness.

In order to show that

$$m_{\lambda}^{-}(\Omega) < \frac{2}{N}S^{\frac{N}{2p}} - D\lambda^{\beta}$$

we applied the extremal function for the p-biharmonic operator, as in [17].

The outline of this article is as follows. In Section 2 we introduce the framework of this problem and state some preliminary results. In Section 3, applying Ekeland's variational principle, we prove the existence of a Palais-Smale sequence for the functional $J,\ via$ implicit function theorem. In Section 4 we prove a local Palais-Smale condition, by using the concentration-compactness principle. Section 5 is devoted to the proof of our main result (Thm. 1).

2. The Nehari manifold $\mathcal{N}_{\lambda}(\Omega)$

We start proving that, for λ small enough, $\mathcal{N}^0(\Omega) = \emptyset$. This fact implies that $\mathcal{N}_{\lambda}(\Omega)$ is really a manifold.

Lemma 2. There exists $\lambda_1 > 0$ (depending on p, q, N and f) such that, for all $\lambda \in (0, \lambda_1)$, we have $\mathcal{N}^0_{\lambda}(\Omega) = \emptyset$.

Proof. We start noting that, if $u \in \mathcal{N}^0_{\lambda}(\Omega)$, then we have

$$\lambda \int_{\Omega} f(x)|u|^{q} dx = \frac{p^{*} - p}{p - q} \int_{\Omega} |u|^{p^{*}} dx = \frac{p^{*} - p}{p^{*} - q} ||u||^{p},$$

that is, for fixed q and p, the value $\lambda \int_{\Omega} f(x)|u|^q dx$ determines $||u||_{p^*}$ e ||u||. If $\beta = p^*/(p^* - q)$, it is true that

$$\lambda \int_{\Omega} f(x)|u|^q dx \le \lambda \|f\|_{\beta} \|u\|_{p^*}^q \le \lambda \|f\|_{\beta} S^{-\frac{q}{p}} \|u\|^q$$

from what follows, for all $u \in \mathcal{N}^0_{\lambda}(\Omega)$,

$$||u|| \le \left[\lambda \left(\frac{p^* - q}{p^* - p}\right) ||f||_{\beta} S^{-\frac{q}{p}}\right]^{\frac{1}{p - q}}.$$
 (6)

We define $I_{\lambda}(u) : \mathbf{E} \setminus \{0\} \to \mathbb{R}$ by

$$I_{\lambda}(u) = K(p^*, q) \left(\frac{\|u\|^{p^*}}{\int_{\Omega} |u|^{p^*} dx} \right)^{\frac{p}{p^*-p}} - \lambda \int_{\Omega} f(x)|u|^q dx,$$
 (7)

where $K(p^*, q) = \left(\frac{p^*-p}{p^*-q}\right) \left(\frac{p-q}{p^*-q}\right)^{\frac{p}{p^*-p}}$ e $\lambda \in [0, \infty)$. It follows that $I_{\lambda}(u) = 0$ for all $u \in \mathcal{N}^0_{\lambda}(\Omega)$.

However, for all $u \in \mathbf{E} \setminus \{0\}$, by Sobolev inequality and (6)

$$I_{\lambda}(u) \geq \|u\|_{p^{*}}^{q} \left(K(p^{*}, q) \frac{1}{S^{-\frac{q(p^{*}-p)+p^{*}p}{p(p^{*}-p)}}} \|u\|^{-q} - \lambda \|f\|_{\beta}\right)$$

$$\geq \|u\|_{p^{*}}^{q} \left\{K(p^{*}, q) \frac{1}{S^{-\frac{q(p^{*}-p)+p^{*}p}{p(p^{*}-p)}}} \lambda^{\frac{-q}{p-q}} \left[\left(\frac{p^{*}-q}{p^{*}-p}\right) \|f\|_{\beta} S^{-\frac{q}{p}}\right]^{\frac{-q}{p-q}} - \lambda \|f\|_{\beta}\right\}.$$
(8)

By considering the function

$$\begin{split} g(\lambda) &= \frac{K(p^*,q)}{S^{-\frac{q(p^*-p)+p^*p}{p(p^*-p)}}} \lambda^{\frac{-q}{p-q}} \left[\left(\frac{p^*-q}{p^*-p} \right) \|f\|_{\beta} S^{-\frac{q}{p}} \right]^{\frac{-q}{p-q}} - \lambda \|f\|_{\beta} \\ &= \frac{A}{\lambda^{q/(p-q)}} - \lambda \|f\|_{\beta}, \end{split}$$

where A is a positive constant, we observe that $g(\lambda)$ is decreasing for $\lambda > 0$ and satisfies both $g(\lambda) \to +\infty$ when $\lambda \to 0^+$ and $g(\lambda) \to -\infty$ when $\lambda \to +\infty$. The constant

$$\lambda_1 = K(p^*, q)^{\frac{p-q}{p}} \left(\frac{p^* - q}{p^* - p}\right) S^{\frac{p^* - q}{p^* - p}} \|f\|_{\beta}^{-\frac{q+p}{p}}$$

is the unique positive solution of $g(\lambda_1) = 0$. Therefore, if there exists $u \in \mathcal{N}^0_{\lambda}(\Omega)$ for $\lambda \in (0, \lambda_1)$, we would have $g(\lambda) > 0$, thus contradicting $I_{\lambda}(u) = 0$.

Lemma 3. If $u \in \mathcal{N}^+(\Omega)$, then $\int_{\Omega} f(x)|u|^q dx > 0$.

Proof. Follows from the definition.

In the sequel we study extremal properties the real function

$$t \mapsto J_{\lambda}(tu) = \frac{1}{p}t^{p}||u||^{p} - \frac{\lambda}{q}t^{q}\int_{\Omega}f(x)|u|^{q}dx - \frac{1}{p^{*}}t^{p^{*}}\int_{\Omega}|u|^{p^{*}}dx,$$

for $t \ge 0$ and any $u \in \mathbf{E} \setminus \{0\}$.

We have

$$\frac{d}{dt}J_{\lambda}(tu) = t^{q-1}\left(t^{p-q}\|u\|^{p} - \lambda \int_{\Omega} f(x)|u|^{q} dx - t^{p^{*}-q} \int_{\Omega} |u|^{p^{*}} dx\right),$$

from what follows that critical points of $t \mapsto J_{\lambda}(tu)$ occur when the function

$$s(t) = t^{p-q} ||u||^p - t^{p^*-q} \int_{\Omega} |u|^{p^*} dx$$

equals $\lambda \int_{\Omega} f(x)|u|^q dx$, a value that does not depend on t.

The function s satisfies s(0) = 0 and $\lim_{t\to\infty} s(t) = -\infty$. Its maximum is attained at t_{max} (depending on u) given by

$$t_{\text{max}} = \left[\frac{(p-q)\|u\|^p}{(p^*-q)\int_{\Omega} |u|^{p^*} dx} \right]^{\frac{1}{p^*-p}}$$

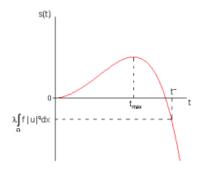
and (see Figure 1)

$$s(t_{\text{max}}) = \left(\frac{(p-q)\|u\|^p}{(p^*-q)\int_{\Omega}|u|^{p^*}dx}\right)^{\frac{p-q}{p^*-p}}\|u\|^p - \left(\frac{(p-q)\|u\|^p}{(p^*-q)\int_{\Omega}|u|^{p^*}dx}\right)^{\frac{p^*-q}{p^*-p}}\int_{\Omega}|u|^{p^*}dx.$$
(9)

An estimate for $s(t_{max})$ is given by

$$s(t_{\max}) \ge \|u\|^q \left(\frac{p-q}{p^*-q}\right)^{\frac{p-q}{p^*-p}} \left(\frac{p^*-p}{p^*-q}\right) \left(S^{\frac{p^*}{p}}\right)^{\frac{p-q}{p^*-p}} > 0. \tag{10}$$

Figure 1: The graph of $s(t)=t^{p-q}\|u\|^p-t^{p^*-q}\int_\Omega|u|^{p^*}\mathrm{d}x$ is displayed, exhibiting the unique point $t^-=t_u^-$ tal que $s(t_u^-)=\lambda\int_\Omega f(x)|u|^q\mathrm{d}x$, if $\int_\Omega f(x)|u|^q\mathrm{d}x\leq 0$.



Lemma 4. For $\beta = \frac{p^*}{p^*-q}$ and $\lambda_2 = \left(\frac{p-q}{p^*-q}\right)^{\frac{1}{p^*-p}} \left(\frac{p^*-p}{p^*-q}\right) S^{\frac{p^*-q}{p^*-p}} \|f\|_{\beta}^{-1}$ there exists, for each fixed $u \in \mathbf{E} \setminus \{0\}$ and $\lambda \in (0, \lambda_2)$,

(i) a unique t_u^- (depending on u) such that $t_u^-u \in \mathcal{N}_{\lambda}^-(\Omega)$. Furthermore, $t_u^- > t_{\max}$ and

$$J_{\lambda}(t_u^- u) = \max_{t > t_{\text{max}}} J_{\lambda}(tu).$$

If $\int_{\Omega} f(x)|u|^q dx > 0$, there also exists

(ii) a unique t_u^+ (depending on u) such that $t_u^+u \in \mathcal{N}_{\lambda}^+(\Omega)$. Furthermore, $0 < t_u^+ < t_{\max}$ and

$$J_{\lambda}(t_u^+ u) = \min_{0 \le t \le t_u^-} J_{\lambda}(tu).$$

Proof. Let us initially suppose that $\int_{\Omega} f(x)|u|^q dx \leq 0$. Then there exists a unique $t_u^- > t_{\text{max}}$ such that $s(t_u^-) = \lambda \int_{\Omega} f(x)|u|^q dx$. We clearly have $s'(t_u^-) < 0$. See Figure 1.

We claim that $t_u^-u \in \mathcal{N}_{\lambda}^-(\Omega)$. In fact, since $\langle J_{\lambda}'(t_u^-u), t_u^-u \rangle = 0$, we have that $t_u^-u \in \mathcal{N}_{\lambda}(\Omega)$. But $\langle \psi_{\lambda}'(t_u^-u), t_u^-u \rangle = (t_u^-)^{q+1} s'(t_u^-) < 0$ proves our claim.

Notice that $\frac{d}{dt}J_{\lambda}(tu)=0$ if, and only if t=0 or $t=t_u^-$. And that $\frac{d^2}{dt^2}J_{\lambda}(tu)\big|_{t=t_u^-}<0$ and we conclude that $J_{\lambda}(t_u^-u)=\max_{t\geq t_{\max}}J_{\lambda}(tu)$. ¹

Suppose now that $\int_{\Omega} f(x)|u|^q dx > 0$. We claim that $\lambda \int_{\Omega} f(x)|u|^q dx < s(t_{\text{max}})$, if $0 < \lambda < \lambda_2$. In fact, we have $s(0) = 0 < \lambda \int_{\Omega} f(x)|u|^q dx \le s(t_{\text{max}})$

 $\lambda \|f\|_{\beta} \|u\|_{p^*}^q \leq \lambda \|f\|_{\beta} S^{-\frac{q}{p}} \|u\|^q \text{ and the definition of } \lambda_2 \text{ guarantees that } s(0) = 0 < \lambda \int_{\Omega} f(x) |u|^q \mathrm{d}x < \|u\|^q \left(\frac{p-q}{p^*-q}\right)^{\frac{p-q}{p^*-p}} \left(\frac{p^*-p}{p^*-q}\right) \left(S^{\frac{p^*}{p}}\right)^{\frac{p-q}{p^*-p}} \leq s(t_{\max}), \text{ according to } (10).$

So, there exist unique t_u^+ and t_u^- such that $s(t_u^+) = \lambda \int_{\Omega} f(x) |u|^q dx = s(t_u^-)$, such that $0 < t_u^+ < t_{\text{max}} < t_u^-$ and $s'(t_u^+) > 0 > s'(t_u^-)$.

Since $\langle J'_{\lambda}(t_u^-u), t_u^-u \rangle = 0$ and $\langle \psi'_{\lambda}(t_u^-u), t_u^-u \rangle < 0$, we conclude that $t_u^-u \in \mathcal{N}_{\lambda}^-(\Omega)$. A similar argument shows that $t_u^+u \in \mathcal{N}_{\lambda}^+(\Omega)$. Notice that t_u^+ and t_u^- are local extrema of $t \mapsto J_{\lambda}(tu)$. The derivative $\frac{d}{dt}J_{\lambda}(tu)$ shows that $J_{\lambda}(tu)$ is decreasing if $0 < t < t_u^+$ and increasing if $t_u^+ < t < t_u^-$, we conclude that

$$J_{\lambda}(t_u^+u) = \min_{0 \le t \le t_u^-} J_{\lambda}(tu).$$

We conclude that $J_{\lambda}(t_u^-u) = \max_{t \geq t_{\text{max}}} J_{\lambda}(tu)$ as in the case $\int_{\Omega} f(x)|u|^q dx \leq 0$, and we are done.

Observe that, to apply Lemma 4(ii), we need that $\int_{\Omega} f(x)|u|^q dx > 0$, a conclusion that we can not infere from our hypotheses: the weight function f might change sign so that $\int_{\Omega} f(x)|u|^q dx \leq 0$. So, we restrict our domain to a subset of Ω where f is positive and consider the auxiliary problem (5) in the case $r = p^*$. This restriction aims to obtain an upper bound for $m_{\lambda}^+(\Omega)$ (see Lemma 6).

2.1. The restricted problem

Since $f : \overline{\Omega} \to \mathbb{R}$ is continuous and change signs in Ω , we have that

$$\Xi = \{x \in \Omega : f(x) > 0\} \neq \emptyset$$

is an open set of \mathbb{R}^N , so it has positive measure.

Therefore, we consider the functional $J_0: W_0^{2,p}(\Xi) \to \mathbb{R}$ defined by

$$J_0(u) = \frac{1}{p} \int_{\Xi} |\Delta u|^p dx - \frac{1}{p^*} \int_{\Xi} |u|^{p^*} dx$$

and the minimization problem

$$m_0(\Xi) = \inf\{J_0(u) : u \in \mathcal{N}_0(\Xi)\},\$$

where, as before, $N_0(\Xi) = \{u \in W_0^{2,p}(\Xi) \setminus \{0\} : \langle J'_0(u), u \rangle = 0\}.$

The manifold $\mathcal{N}_0(\Xi)$ splits $\mathbf{E}(\Xi) \setminus \{0\}$ into two components:

$$C_a = \{u \in W_0^{2,p}(\Xi) \setminus \{0\} : \langle J_0'(u), u \rangle > 0\}$$

and

$$C_b = \{u \in W_0^{2,p}(\Xi) \setminus \{0\} : \langle J'_0(u), u \rangle < 0\}.$$

Notice that if $u \in C_a$, then $J_0(u) > 0$; and if $\langle J'_0(u), u \rangle < 0$ we have that $u \in C_b$. The geometry of the functional J_0 implies that the component C_a is a neighborhood of the origin.

In order to prove that $m_0(\Xi) > 0$ we define

$$c_1 := \inf_{u \in W_0^{2,p}(\Xi) \backslash \{0\}} \max_{t \geq 0} J_0(tu) \quad \text{and} \quad c := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J_0(\gamma(t)),$$

where
$$\Gamma = \{ \gamma \in C([0, 1], W_0^{2,p}(\Xi)) : \gamma(0) = 0, J_0(\gamma(1)) < 0 \}.$$

By using the definition and standard arguments, we can show that

Lemma 5.
$$m_0(\Xi) = c_1 = c > 0$$
.

We have obtained some properties and results about the Nehari manifold $\mathcal{N}_{\lambda}(\Omega)$. We have proved that, for each $u \not\equiv 0$ fixed, extremal properties of the functional $J_{\lambda}(tu)$ in $\mathcal{N}_{\lambda}(\Omega)$. When restraining our study to the open set Xi where f is positive, we have considered the minimization problem

$$m_0(\Xi) = \inf\{J_0(u) : u \in \mathcal{N}_0(\Xi)\},\$$

where $\mathcal{N}_0(\Xi)$ is the Nehari manifold associated to J_0 . The last result proves that $m_0(\Xi) > 0$. We now apply this result to obtain an upper bound to $m_{\lambda}^+(\Omega)$.

2.2. Back to the original problem

We observe that, for each $u \in W_0^{2,p}(\Xi) \setminus \{0\}$, by defining u = 0 in $\Omega \setminus \Xi$, we obtain a function in $\mathbf{E} \setminus \{0\}$, since $u \in W_0^{2,p}(\Omega) \subset (W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega))$.

Lemma 6. The following statements are true:

(i) there exists $\tilde{t} > 0$ such that

$$m_{\lambda}(\Omega) \le m_{\lambda}^{+}(\Omega) < \frac{q-p}{q} \left(\tilde{t}\right)^{p} m_{0}(\Xi) < 0, \quad \forall \ \lambda \in (0, \lambda_{2});$$

J is coercive and bounded from below in N_λ(Ω) for any λ ∈ (0, λ₃).

Proof. For each $u \in W_0^{2,p}(\Xi) \setminus \{0\} \subset \mathbf{E} \setminus \{0\}$, we have

$$\int_{\Omega} f(x)|u|^q dx = \int_{\Xi} f(x)|u|^q dx > 0.$$

Consider t_u^+ as defined in Lemma 4 (ii). So, $t_u^+u \in \mathcal{N}_{\lambda}^+(\Omega)$ and

$$J_{\lambda}(t_{u}^{+}u) = \frac{(t_{u}^{+})^{p}}{p} \int_{\Omega} |\Delta u|^{p} dx - \lambda \frac{(t_{u}^{+})^{q}}{q} \int_{\Omega} f(x)|u|^{q} dx - \frac{(t_{u}^{+})^{p^{*}}}{p^{*}} \int_{\Omega} |u|^{p^{*}} dx$$

$$= \left(\frac{q-p}{q}\right) \tilde{t}^{p} \left[\frac{1}{p} \int_{\Omega} |\Delta u|^{p} dx - \left(\frac{q-p^{*}}{q-p}\right) \frac{\tilde{t}^{p^{*}-p}}{p^{*}} \int_{\Omega} |u|^{p^{*}} dx\right].$$

Since $\tilde{t} < t_{\text{max}} = \left[\frac{(p-q)\|u\|^p}{(p^*-q)\int_{\Omega} |u|^{p^*} dx} \right]^{\frac{1}{p^*-p}}$ and $u \in \mathcal{N}(\Xi)$, we conclude that

$$J_{\lambda}(t_u^+ u) < \left(\frac{q-p}{q}\right) (t_u^+)^p \left[\frac{1}{p} \int_{\Omega} |\Delta u|^p dx - \left(\frac{q-p^*}{q-p}\right) \frac{(t_{\max})^{p^*-p}}{p^*} \int_{\Omega} |u|^{p^*} dx\right].$$

from what follows

$$J_{\lambda}(t_{u}^{+}u) < \frac{q-p}{q}(t_{u}^{+})^{p}m_{0}(\Xi) < 0,$$

proving the first claim for $\tilde{t} = t_u^+$.

Since $u \in \mathcal{N}_{\lambda}(\Omega)$ guarantees that $\int_{\Omega} |\Delta u|^p dx = \lambda \int_{\Omega} f(x)|u|^q dx + \int_{\Omega} |u|^{p^*} dx$ estimating $J_{\lambda}(u)$, by Young inequality we obtain

$$J_{\lambda}(u) \geq \frac{p^{*} - p}{pp^{*}} \int_{\Omega} |\Delta u|^{p} dx - \lambda \frac{p^{*} - q}{qp^{*}} ||f||_{\beta} S^{-\frac{q}{p}} ||u||^{q}$$

$$\geq \frac{1}{pp^{*}} \left[(p^{*} - p) - \lambda (p^{*} - q) \right] ||u||^{p} - \lambda \frac{(p^{*} - q)(p - q)}{pqp^{*}} \left(||f||_{\beta} S^{-\frac{q}{p}} \right)^{\frac{p}{p - q}}$$

proving that $J_{\lambda}(u)$ is coercive in $\mathcal{N}_{\lambda}(\Omega)$, for all $\lambda \in (0, \lambda_3)$ where $\lambda_3 = \frac{p^* - p}{p^* - q}$. Note also that from $\lambda \in (0, \lambda_3)$, follows

$$J_{\lambda}(u) \ge -\lambda \frac{(p^* - q)(p - q)}{pqp^*} \left(\|f\|_{\beta} S^{-\frac{q}{p}} \right)^{\frac{p}{p - q}},$$
 (11)

showing that J_{λ} is bounded from below in $\mathcal{N}_{\lambda}(\Omega)$.

We now obtain an estimate from below for $m_{\lambda}^{-}(\Omega)$, if $\lambda \in (0, \lambda_1)$, where λ_1 was defined in Lemma 2.

Lemma 7. For $\lambda \in (0, \lambda_1)$, the set $\mathcal{N}_{\lambda}^{-}(\Omega)$ is closed.

Proof. If $u \in \mathcal{N}_{\lambda}^{-}(\Omega)$, we have

$$(p-q)\int_{\Omega} |\Delta u|^p dx - (p^*-q)\int_{\Omega} |u|^{p^*} dx < 0,$$

from what follows $||u||^{p^*-p} > \left(\frac{p-q}{p^*-q}\right) S^{\frac{p^*}{p}}$. Thus,

$$||u|| > \left(\frac{p-q}{p^*-q}\right)^{\frac{1}{p^*-p}} S^{\frac{p^*}{p(p^*-p)}} = \left(\frac{p-q}{p^*-q}\right)^{\frac{1}{p^*-p}} S^{\frac{N}{2p^2}},$$
 (12)

an inequality valid for all $u \in \mathcal{N}_{\lambda}^{-}(\Omega)$.

Consider a sequence $\{u_n\} \subset \mathcal{N}_{\lambda}^{-}(\Omega)$ such that $u_n \to u$ in \mathbf{E} . It follows from (12) that $u \in \mathbf{E} \setminus \{0\}$. The C^1 regularity of J_{λ} implies that

$$\psi_{\lambda}(u) := \langle J'_{\lambda}(u), u \rangle = 0,$$

thus showing that $u \in \mathcal{N}_{\lambda}(\Omega)$. Since $\langle \psi'_{\lambda}(u), u \rangle$ is continuous, we have $\langle \psi'_{\lambda}(u), u \rangle \leq 0$. But $\mathcal{N}^{0}_{\lambda}(\Omega) = \emptyset$, if $\lambda \in (0, \lambda_{1})$, what implies that $\langle \psi'_{\lambda}(u), u \rangle < 0$, proving that $u \in \mathcal{N}^{-}_{\lambda}(\Omega)$.

Lemma 8. There exists a constant C > 0 such that, for all $\lambda \in (0, \lambda_4)$ we have

$$m_{\lambda}^{-}(\Omega) \ge C > 0$$
,

where
$$\lambda_4 = \frac{q}{2p} \left(\frac{p^* - p}{p^* - q} \right) \left(\frac{p - q}{p^* - q} \right)^{\frac{p - q}{p^* - p}} ||f||_{\beta}^{-1} S^{\frac{Np}{2p^2}}$$
.

Proof. It follows from (11) and (12) that

$$J_{\lambda}(u) \geq \frac{p^{*} - p}{pp^{*}} \int_{\Omega} |\Delta u|^{p} dx - \lambda \frac{p^{*} - q}{qp^{*}} ||f||_{\beta} S^{-\frac{q}{p}} ||u||^{q}$$

$$> ||u||^{q} \left[\left(\frac{p^{*} - p}{pp^{*}} \right) \left(\frac{p - q}{p^{*} - q} \right)^{\frac{p - q}{p^{*} - p}} S^{\frac{N(p - q)}{2p^{2}}} - \lambda \frac{p^{*} - q}{qp^{*}} ||f||_{\beta} S^{-\frac{q}{p}} \right]$$

(Observe that λ_4 was chosen to guarantee that the bracket is positive.)

So,

$$J_{\lambda}(u) > \left(\frac{1}{2}\right) \left(\frac{p^* - p}{pp^*}\right) \left(\frac{p - q}{p^* - q}\right)^{\frac{p}{p^* - p}} S^{\frac{N}{2p}} =: C.$$

Taking the infimum of $J_{\lambda}(u)$ for $u \in \mathcal{N}_{\lambda}^{-}(\Omega)$, we obtain

$$m_{\lambda}^{-}(\Omega) \ge C > 0.$$

We now aim to obtain an upper bound for $m_{\lambda}^{-}(\Omega)$, which will be used to prove the Palais-Smale condition in this level. The same proof is valid in both spaces $\mathbf{E} = W_0^{2,p}(\Omega)$ and $\mathbf{E} = W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$, thanks to the following result showed by Gazzola, Grunau and Sweers (veja [9, Thm.1, p. 2]).

Theorem 9. The best constant for the immersion $W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$ is equal to the best constant for the immersion $W_0^{2,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$.

Lemma 10. For any D > 0 there exists $\lambda_5 > 0$ (depending on f, p, q, Ω and D) such that, for all $\lambda \in (0, \lambda_5)$, we have

$$m_{\lambda}^{-}(\Omega) < \frac{2}{N}S^{\frac{N}{2p}} - D\lambda^{\beta},$$

where $\beta = \frac{p^*}{p^*-q}$.

Proof. Take $x_0 \in \Omega$ such that $f(x_0) > 0$ and ρ_0 , $0 < \rho_0 < 1$, such that f > 0 in $B_{2\rho_0}(x_0) \subset \Omega$.

Again, we consideremos the functional $J_0: \mathbf{E} \to \mathbb{R}$ given by $J_0(u) = \frac{1}{p} ||u||^p - \frac{1}{p^*} \int_{\Omega} |u|^{p^*} dx$ and a cut-off function $\eta \in C_0^{\infty}(\Omega)$ satisfying

$$\eta \equiv 1 \text{ in } B_{\rho_0}(x_0)$$

 $\eta \equiv 0 \text{ out } B_{2\rho_0}(x_0)$

 $0 \leq \eta \leq 1 \text{ and } |\nabla \eta| \leq C.$

For $\epsilon > 0$, consider

$$u_{\epsilon}(x) = \eta(x)U\left(\frac{x}{\epsilon}\right),$$

where U is a radially symmetric minimizer of $\left\{\frac{\|u\|^p}{\|u\|_{p^*}^p}\right\}$, for $u \in \mathbf{E}(\mathbb{R}^N) \setminus \{0\}$. The following estimates are true (see [17]):

$$\left(\int_{\Omega} |u_{\epsilon}|^{p^{*}} dx\right)^{\frac{p}{p^{*}}} = \epsilon^{-\frac{N-2p}{p}} ||U||_{p^{*}}^{p} + O(\epsilon)$$

$$\int_{\Omega} |\Delta u_{\epsilon}|^{p} dx = \epsilon^{-\frac{N-2p}{p}} ||U||^{p} + O(1)$$

$$\frac{\int_{\Omega} |u_{\epsilon}|^{p^{*}} dx}{\left(\int_{\Omega} |u_{\epsilon}|^{p^{*}} dx\right)^{\frac{p}{p^{*}}}} = S + O(\epsilon^{\frac{N-2p}{p}}), \tag{13}$$

where

$$\frac{\|U\|^p}{\|U\|^p_{p^*}} = S = \inf_{u \in \mathbf{E}(\mathbb{R}^N) \backslash \{0\}} \frac{\|u\|^p}{\|u\|^p_{p^*}}.$$

Define u_0 by $u_0(x) = u_{\epsilon}(x - x_0)$. For A, B > 0, by applying the identity

$$\sup_{t>0} \left(\frac{t^p}{p} A - \frac{t^{p^*}}{p^*} B \right) = \frac{2}{N} \left(\frac{A}{B^{\frac{p}{p^*}}} \right)^{\frac{N}{2p}}$$

to $J_0(tu_0)$ and also (13), we obtain

$$\sup_{t\geq 0} J_0(tu_0) = \sup_{t\geq 0} \left(\frac{t^p}{p} ||u_0||^p - \frac{t^{p^*}}{p^*} \int_{\Omega} |u_0|^{p^*} dx \right)
= \frac{2}{N} S^{\frac{N}{2p}} + O(\epsilon^{\frac{N-2p}{p}}).$$
(14)

It follows from the definition of J_{λ} and u_0 that

$$\sup_{t \ge t_{\text{max}}} J_{\lambda}(tu_0) = \sup_{t \ge t_{\text{max}}} \left(J_0(tu_0) - t^q \frac{\lambda}{q} \int_{\Omega} f |u_0|^q dx \right)$$

$$\le \frac{2}{N} S^{\frac{N}{2p}} + O(\epsilon^{\frac{N-2p}{p}}) - (t_{\text{max}})^q \frac{\lambda}{q} \int_{B_{co}(0)} f |u_{\epsilon}|^q dx \quad (15)$$

For $0 < \epsilon < \rho_0^{\frac{p}{p-1}}$, we estimate the integral in the last inequality:

$$\int_{B_{\rho_0}(0)} f |u_{\epsilon}|^q dx = \int_{B_{\rho_0}(0)} \frac{f}{\left(\epsilon + |x|^{\frac{p}{p-1}}\right)^{\frac{N-2p}{p}q}} dx \ge \int_{B_{\rho_0}(0)} \frac{f}{\left(2\rho_0^{\frac{p}{p-1}}\right)^{\frac{N-2p}{p}q}} dx = C_1,$$
(16)

where C_1 is a positive constant that does not depend on ϵ .

Since $\beta > 1$, we can choose $\delta > 0$ such that, for all $\lambda \in (0, \delta)$, we have

$$O(\lambda^{\beta}) + D\lambda^{\beta} - C_2\lambda < 0,$$
 (17)

where D is a positive constant and $C_2 > 0$ will be chosen in the sequel.

We define $\lambda_5^{\beta} = \min\{\rho_0^{\frac{N-2p}{p-1}}, \delta^{\beta}\}$ and $\epsilon = (\lambda^{\beta})^{\frac{p}{N-2p}}$. If $\lambda \in (0, \lambda_5)$, we can substitute (16) and (17) into (15) to obtain

$$\sup_{t \ge t_{\text{max}}} J_{\lambda}(tu_0) \le \frac{2}{N} S^{\frac{N}{2p}} + O(\lambda^{\beta}) - C_2 \lambda,$$

where $C_2 = (t_{\text{max}})^q \frac{C_1}{q}$. Since (17) implies that $O(\lambda^{\beta}) - C_2 \lambda < -D\lambda^{\beta}$, we conclude that

$$\sup_{t \ge t_{\text{max}}} J_{\lambda}(tu_0) < \frac{2}{N} S^{\frac{N}{2p}} - D\lambda^{\beta}. \tag{18}$$

Lemma 4 proves the existence of $t_{u_0}^- > t_{\max} > 0$ such that $t_{u_0}^- u_0 \in \mathcal{N}_{\lambda}^-(\Omega)$ and $J_{\lambda}(t_{u_0}^- u_0) = \max_{t \geq t_{\max}} J_{\lambda}(t u_0)$. Thus, it follows from (18) that

$$m_{\lambda}^{-}(\Omega) \leq J_{\lambda}(t_{u_0}^{-}u_0) = \max_{t \geq t_{\text{max}}} J_{\lambda}(tu_0) < \frac{2}{N}S^{\frac{N}{2p}} - D\lambda^{\beta}$$

for $\lambda \in (0, \lambda_5)$.

3. The local PS-condition via concentration-compactness principle

We now prove that the functional J_{λ} satisfies the Palais-Smale condition for levels below a certain constant.

Theorem 11. There exists a positive constant D such that all Palais-Smale sequence $\{u_n\} \subset \mathbf{E}$ for J_{λ} in the level c, has a strongly convergent subsequence, if

$$c < \frac{2}{N}S^{\frac{N}{2p}} - D\lambda^{\beta}$$
.

Proof. The sequence $\{u_n\}$ is bounded. In fact, for any $\delta > 0$, we have

$$c + \delta \geq J(u_n) - \frac{1}{p^*} \langle J'(u_n), u_n \rangle + \frac{1}{p^*} \langle J'(u_n), u_n \rangle$$

$$\geq \left(\frac{1}{p} - \frac{1}{p^*}\right) \int_{\Omega} |\Delta u_n|^p dx - \lambda \left(\frac{1}{q} - \frac{1}{p^*}\right) ||f||_{\beta} S^{-\frac{q}{p}} \left(\int_{\Omega} |\Delta u_n|^p dx\right)^{\frac{q}{p}}$$

$$- \frac{1}{p^*} ||J'(u_n)|| \left(\int_{\Omega} |\Delta u_n|^p dx\right)^{\frac{1}{p}}. \tag{19}$$

So, by supposing $\{u_n\}$ unbounded, we reach a contradiction with (19), since 1 < q < p. So, we suppose that

$$u_n \rightharpoonup u$$
 in \mathbf{E} (20)

and

$$\begin{vmatrix} \Delta u_n |^p \rightharpoonup \mu \\ |u_n|^{p*} \rightharpoonup \nu \end{vmatrix}$$
 weakly-* in the sense of measures, (21)

where μ and ν are bounded measures. It follows from Lions' lemma (see [14]-[15]) that (passing to subsequences if necessary)

$$\begin{cases}
 u_n \to u & \text{in } L^r(\Omega) \text{ and a.e. in } \overline{\Omega}, & \text{if } 1 < r < p^*, \\
 |\Delta u_n|^p \rightharpoonup^* \mu \ge |\Delta u|^p + \sum_{k \in I} \mu_k \delta_{x_k}, \\
 |u_n|^{p^*} \rightharpoonup^* \nu = |u|^{p^*} + \sum_{k \in I} \nu_k \delta_{x_k}, \\
 \nu_k^{\frac{p}{p^*}} \le \mu_k S^{-1},
\end{cases}$$
(22)

for some set I, finite or empty.

Enough to show that $I = \emptyset$. Supposing the contrary, fix $k \in I$ and define $\psi_{\epsilon} \in C^{\infty}(\mathbb{R}^{N})$ such that

$$\begin{cases}
\psi_{\epsilon} \equiv 1 \text{ in } B_{\epsilon}(x_k), \\
\psi_{\epsilon} \equiv 0 \text{ out } B_{2\epsilon}(x_k), \\
|\nabla \psi_{\epsilon}| \leq \frac{2}{\epsilon}, \quad |\Delta \psi_{\epsilon}| \leq \frac{2}{\epsilon^2}.
\end{cases}$$
(23)

Now, consider the bounded sequence given by $\{\phi_{\epsilon}u_n\}$, where $\phi_{\epsilon}(x) = \psi_{\epsilon}(x)\chi_{\Omega}(x)$. It follows that $\lim_{n\to\infty}\langle J'(u_n), \phi_{\epsilon}u_n\rangle = 0$, thus implying

$$\lim_{n\to\infty} \int_{\Omega} |\Delta u_n|^{p-2} \Delta u_n \Delta(\phi_{\epsilon} u_n) dx = \lambda \int_{\Omega} f(x) |u|^q \phi_{\epsilon} dx + \int_{\Omega} \phi_{\epsilon} d\nu. \quad (24)$$

Expanding the left side of the above equation and taking the limit when $\epsilon \to 0$, we have that $\nu_k = \mu_k$.

It follows from Lions' lemma, that $\mu_k \geq S\nu_k^{\frac{p}{p^*}}$ and, since $\nu_k > 0$, we conclude that $\nu_k \geq S^{\frac{N}{2p}}$.

Therefore,

$$\begin{split} c &= \lim_{n \to \infty} J_{\lambda}(u_n) = \lim_{n \to \infty} \left\{ J_{\lambda}(u_n) - \frac{1}{p} \langle J_{\lambda}'(u_n), u_n \rangle \right\} \\ &= \lim_{n \to \infty} \inf \left\{ \lambda \left(\frac{1}{p} - \frac{1}{q} \right) \int_{\Omega} f(x) |u_n|^q \mathrm{d}x + \left(\frac{1}{p} - \frac{1}{p^*} \right) \int_{\Omega} |u_n|^{p^*} \mathrm{d}x \right\} \\ &\geq \frac{2}{N} S^{\frac{N}{2p}} + \frac{2}{N} \int_{\Omega} |u|^{p^*} \mathrm{d}x - \lambda \left(\frac{1}{q} - \frac{1}{p} \right) \|f\|_{\beta} \left(\int_{\Omega} |u|^{p^*} \mathrm{d}x \right)^{\frac{q}{p^*}} \end{split}$$

We now define $g(x) = \kappa_1 x^{p^*} - \lambda \kappa_2 x^q$, for

$$\kappa_1 = \frac{2}{N}$$
 e $\kappa_2 = \left(\frac{1}{q} - \frac{1}{p}\right) ||f||_{\beta}$.

The function g attains an absolute minimum for x > 0 at $x_0 = \left(\frac{\lambda \kappa_2 q}{p^* \kappa_1}\right)^{\frac{1}{p^* - q}}$. Thus,

$$g(x) \ge g(x_0) = -D\lambda^{\frac{p^*}{p^*-q}}$$

where

$$D = \kappa_2 \left(\frac{\kappa_2 q}{p^* \kappa_1}\right)^{\frac{q}{p^*-q}} - \kappa_1 \left(\frac{\kappa_2 q}{p^* \kappa_1}\right)^{\frac{p^*}{p^*-q}} > 0.$$

Therefore

$$c \ge \frac{2}{N} S^{\frac{N}{2p}} - D \lambda^{\frac{p^*}{p^*-q}},$$

thus contradicting that $c < \frac{2}{N}S^{\frac{N}{2p}} - D\lambda^{\beta}$. This means that $I = \emptyset$ and the proof is complete.

4. Proof of Theorem 1

Proposition 12. There exists $\overline{\lambda} > 0$ such that, for all $\lambda \in (0, \overline{\lambda})$, the functional J_{λ} has a minimizer $u_0^+ \in \mathcal{N}_{\lambda}^+(\Omega)$ satisfying

(i)
$$J_{\lambda}(u_0^+) = m_{\lambda}(\Omega) = m_{\lambda}^+(\Omega);$$

(ii) u₀⁺ is a critical point for J_λ.

Proof. We define $\overline{\lambda} = min\{\lambda_1, \lambda_2, \lambda_3\}$. For all $\lambda \in (0, \overline{\lambda})$ according to Lemma 6, we have $m_{\lambda}(\Omega) < 0$. Decreasing $\overline{\lambda}$ if necessary, we obtain

$$m_{\lambda}(\Omega) < 0 \le \frac{2}{N} S^{\frac{N}{2p}} - D\lambda^{\beta}, \quad \forall \ \lambda \in (0, \overline{\lambda}).$$

By using Ekeland's variational principle we obtain a Palais-Smale sequence in the level $m_{\lambda}(\Omega)$. The Theorem 11 ensure that there exists a sequence $\{u_n\} \subset \mathcal{N}_{\lambda}(\Omega)$ such that (passing to a subsequence if necessary) $u_n \to u_0^+$ in \mathbf{E} . Since $J_{\lambda} \in C^1$, we have

$$J_{\lambda}(u_0^+) = m_{\lambda}(\Omega)$$
 and $J'_{\lambda}(u_0^+) = 0$.

We now claim that $u_0^+ \in \mathcal{N}_{\lambda}^+(\Omega)$. In fact, since $m_{\lambda}(\Omega) < 0$, we have $u_0^+ \in \mathbf{E} \setminus \{0\}$. Taking limits in the identity

$$\langle J_{\lambda}'(u_n), u_n \rangle = \int_{\Omega} |\Delta u_n|^p dx - \lambda \int_{\Omega} f(x) |u_n|^q dx - \int_{\Omega} |u_n|^{p^*} dx = 0$$
 (25)

we conclude that $u_0^+ \in \mathcal{N}_{\lambda}(\Omega) = \mathcal{N}_{\lambda}^+(\Omega) \cup \mathcal{N}_{\lambda}^-(\Omega)$.

We claim that $\int_{\Omega} f(x)|u_0^+|^q dx > 0$. Supposing the contrary,

$$J_{\lambda}(u_n) = \frac{1}{p} \int_{\Omega} |\Delta u_n|^p dx - \frac{\lambda}{q} \int_{\Omega} f(x) |u_n|^q dx - \frac{1}{p^*} \int_{\Omega} |u_n|^{p^*} dx$$

$$\rightarrow -\left(\frac{1}{q} - \frac{1}{p}\right) \lambda \int_{\Omega} f(x) |u_0^+|^q dx + \left(\frac{1}{p} - \frac{1}{p^*}\right) \int_{\Omega} |u_0^+|^{p^*} dx$$

$$\geq \left(\frac{1}{p} - \frac{1}{p^*}\right) \int_{\Omega} |u_0^+|^{p^*} dx$$

but $J_{\lambda}(u_n) \to m_{\lambda}(\Omega) < 0$, a contradiction. This proves the claimed.

Again by contradiction, suppose that $u_0^+ \in \mathcal{N}_{\lambda}^-(\Omega)$. According to Lemma 4, there exist unique t_0^+ and t_0^- such that $t_0^+u_0^+ \in \mathcal{N}_{\lambda}^+(\Omega)$, $t_0^-u_0^+ \in \mathcal{N}_{\lambda}^-(\Omega)$ and $0 < t_0^+ < t_0^- = 1$. Since

$$\frac{d}{dt}J_{\lambda}(t_0^+u_0^+) = 0$$
 e $\frac{d^2}{dt^2}J_{\lambda}(t_0^+u_0^+) > 0$,

there exists $\bar{t} \in t_0^+, t_0^-$], such that $J_{\lambda}(t_0^+ u_0^+) < J_{\lambda}(\bar{t} u_0^+)$, from what follows

$$J_{\lambda}(t_0^+u_0^+) < J_{\lambda}(\overline{t}u_0^+) \le J_{\lambda}(t_0^-u_0^+) = J_{\lambda}(u_0^+) = m_{\lambda}(\Omega)$$

and we have reached a contradiction. This proves (i) and (ii).

Since $\mathcal{N}_{\lambda}^{-}(\Omega)$ is closed, the proof of the next result is similar, but simpler:

Proposition 13. The exists $\lambda^* > 0$ such that, for all $\lambda \in (0, \lambda^*)$, the functional J_{λ} has a minimizer $u_0^- \in \mathcal{N}_{\lambda}^-(\Omega)$ such that

- (i) $J_{\lambda}(u_0^-) = m_{\lambda}^-(\Omega);$
- (ii) u_0^- is a critical point for J_λ .

We take $\lambda_0 = min\{\overline{\lambda}, \lambda^*\}$ and the Theorem 1 is then obtained collecting the results already proved.

Acknowledgments The authors would like to thank Prof. Jesús García-Azorero for many useful comments on this work.

REFERÊNCIAS

- [1] J. Benedikt and P. Drábek, Asymptotics for the principal eigenvalue of the p-biharmonic operator on the ball as p approaches 1, Nonlinear Analysis 95 (2014), 735-742.
- [2] J. Benedikt and P. Drábek, Estimates of the principal eigenvalue of the pbiharmonic operator, Nonlinear Analysis 75 (2012), 5374-5379.
- [3] F. Bernis, J. Garcia Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations 1 (1996), no. 2, 219-240.
- [4] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477.
- [5] P. Drábek and M. Ôtani, Global bifurcation result for the p-biharmonic operator, Electron. J. of Differential Equations 2001, No. 48, 19 pp.
- [6] D.E. Edmunds, D. Fortunato and E. Janelli, Critical exponents, critical dimension and the biharmonic operator, Arch. Rational Mech. Anal. 112 (1990), no. 3, 269-289.
- [7] J. Garc'ıa-Azorero and I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, Trans. Amer. Math. Soc. **323** (1991), no. 3, 877-895.
- [8] J. Garc'1a-Azorero and I. Peral, Some results about the existence of a second positive solutions in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), 941-957.
- [9] F. Gazzola, H.-Ch. Grunau and G. Sweers, Optimal Sobolev and Hardy-*Rellich constants under Navier boundary conditions*, Ann. Mat. Pura Appl. (4) **189** (2010), no. 3, 475-486.
- [10] M. Gueda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902.
- [11] H. He, J. Yang, Asymptotic behavior of solutions for Henon systems with nearly critical exponent, J. Math. Anal. Appl. **347** (2008), no. 2, 459-471.
- [12] C. Ji and W. Wang, On the p-biharmonic equation involving concaveconvex nonlinearities and sign-changing weight function, Electron. J. Qual. Theory Differ. Equ. 2012, no. 2, 17 pp.
- [13] A. El Khalil, M. D. Morchid Alaoui and A. Touzani, On the pbiharmonic operator with critical Sobolev exponent and nonlinear Steklov boundary condition, Int. J. Anal. 2014, Art. ID 498386, 8 pp.

- [14] P.L. Lions, *The concentration-compactness principle in the calculus of variations. The limit case I and II*, Rev. Mat. Iberoamericana **1** (1985), no. 1, 145-201 and no. 2, 45-121.
- [15] P.L. Lions, *The concentration-compactness principle in the calculus of variations. The limit case. II*, Rev. Mat. Iberoamericana **1** (1985), no. 2, 45-121.
- [16] P.J. McKenna, Large-amplitude periodic oscillations in simple and complex mechanical systems: outgrowths from nonlinear analysis, Milan J. Math 74 (2006), 79-115.
- [17] Y. Shen and J. Zhang, Multiplicity of positive solutions for a Navier boundary-value problem involving the p-biharmonic with critical exponent, Electron. J. Differential Equations **2011**, no. 47, 14 pp.