Highlights on quinolonic compounds with changes on the basic structure as promising molecules to new drugs
DOI:
https://doi.org/10.34119/bjhrv6n6-167Keywords:
quinolone, antibacterial, structure-activity relationshipAbstract
The introduction of quinolonic antimicrobials on the market caused a revolution in antibacterial therapy. 4-quinolone skeleton became the target of many studies of structure-activity relationship establishing the parameters considered optimal for the development of new quinolonic antibiotics. These parameters limited the development of new compounds, so it is possible finding compounds with changes in the same position with similar substituents. The purpose of this article is to identify quinolonic compounds which do not fit into one or more criteria determined as ideal in the structure-activity relationship studies for quinolonic antibiotics and exemplify that it is possible to develop of even more active compounds making changes in previously unalterable positions.
References
ADAM, H. J.; LAING, N. M.; KING, C. R.; LULASHNYK, B.; HOBAN, D. J.; ZHANEL, G. G. In Vitro Activity of Nemonoxacin, a Novel Nonfluorinated Quinolone, against 2,440 clinical isolates. Antimicrobial Agents and Chemotherapy. p.4915-4920, 2009.
ABDELRAHMAN, M. A.; SALAMA, I.; GOMAA, M. S.; ELAASSER, M. M.; ABDEL-AZIZ, M. M.; SOLIMAN, D. H. Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazine derivatives as potential antimicrobial and antitubercular agents. European Journal of Medicinal Chemistry, v.138 p.698-714, 2017.
ALLAKA, T. R.; KUMMARI, B.; POLKAM, N.; KUNTALA, N.; CHEPURI, K; ANIREDDY, J. S. Novel heterocyclic 1,3,4‐oxadiazole derivatives of fluoroquinolones as a potent antibacterial agent: Synthesis and computational molecular modeling. Molecular Diversity, 26, p.1581–1596, 2022.
BETECK, R. M.; JORDAAN, A.; SWART, T.; KOOY, F. V. D.; WARNER, D. F.; HOPPE, H. C.; LEGOABE, L. J. 6-Nitro-1-benzylquinolones exhibiting specific antitubercular activity. Chemical Biology and Drug Design, v.00, p.1-8, 2020.
BETECK, R. M.; SELDON, R.; JORDAAN, A.; WARNER, D. F.; HOPPE, H. C.; LAMING, D.; KHANYE, S. D. New Quinolone-Based Thiosemicarbazones Showing Activity Against Plasmodium falciparum and Mycobacterium tuberculosis. Molecules, v.24, p.1740, 2019.
BREHMER, M. C. Síntese e reatividade das cloro 1,6- e 1,5-naftiridinas e o estudo de suas potencialidades. 2002. 91 f. Dissertação (Mestrado Interinstitucional em Química – Universidade Federal de Santa Catarina e Universidade Regional de Blumenau, 2002.
CHANG, L.-W; HSU, M.-C. & ZHANG, Y.-Y. Nemonoxacin (Taigenyx®): A new non-fluorinated quinolone. Staphylococcus and Streptococcus. P.1-14, 2020.
CHANG, S.-P.; LEE, H.-Z.; LAI, C.-C.; TANG, H.-J. The efficacy and safety of nemonoxacin compared with levofloxacin in the treatment of communityacquired pneumonia: a systemic review and metaanalysis of randomized controlled trials. Infection and Drug Resistance. v.12, p.433-438, 2019.
CHEN, Y.; HUNG, H.; LU, C.; LI, K.; TZENG, C. Synthesis and anticancer evaluation of certain indolo[2,3-b]quinoline derivatives. Bioorganic & Medicinal Chemistry, v.12, p.6539–6546, 2004.
CHENG, C.; OTHMAN, E. M.; REIMER, A.; GRÜNE, M.; KOZJAK-PAVLOVIC, V.; STOPPER, H.; HENTSCHEL, U.; ABDELMOHSEN, U. R. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Letters, v.57, p.2786–2789, 2016.
CHENG, Y.; AVULA, S. R.; GAO, W.-W.; ADDLA, D.; TANGADANCHU, V. K. R.; ZHANG, L.; ZHOU, C.-H. Multi-targeting exploration of new 2-aminothiazolyl quinolones: Synthesis, antimicrobial evaluation, interaction with DNA, combination with topoisomerase IV and penetrability into cells. European Journal of Medicinal Chemistry, v.124, p.935-945, 2016.
CHOTIKANATIS, K.; KOHLHOFF, S. A. & HAMMERSCHLAG, M. R. In Vitro Activity of Nemonoxacin, a Novel Nonfluorinated Quinolone Antibiotic, against Chlamydia trachomatis and Chlamydia pneumoniae. Antimicrobial Agents and Chemotherapy, v.58, n.3, p.1800–1801, 2014.
CHU, D.T.W. & FERNANDES, P. Recent developments in the field of quinolone antibacterial agents. Advances in drug research, v.21, p.39-144, 1991.
CHUNG, H. S. & WOO, W. S. A Quinolone Alkaloid with Antioxidant Activity from the Aleurone Layer of Anthocyanin-Pigmented Rice. Journal of Natural Products, v.64, p.1579-1580, 2001.
CUI, S.-F.; ADDLA, D. & ZHOU, C.-H. Novel 3-Aminothiazolquinolones: Design, Synthesis, Bioactive Evaluation, SARs, and Preliminary Antibacterial Mechanism. Journal of Medicinal Chemistry, v.59, n.10, p.4488–4510, 2016.
DHIMAN, P.; ARORA, N.; THANIKACHALAM, P V.; MONGA, V. Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorganic Chemistry, v.92, p.1-45, 2019.
DOMAGALA, J. M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. Journal of Antimicrobial Chemotherapy, v.33, p.685-687, 1994.
EL-DESOKY, E. I.; EL-SAYED, M. A.; ABD-ELGHANI, G. E. Synthesis and Antimicrobial Evaluation of Some New Fused Quinolones Heterocyclic Compounds. International Journal of Modern Organic Chemistry, v.5, n.1, p.21-35, 2018.
EMAMI, S.; SHAFIEE, A.; FOROUMADI, A. Quinolones: recent structural and clinical developments. Iranian Journal of Pharmaceutical Research, v.3, p.123-136, 2005.
FAN, Y.; CHENG, X.; WU, J.; LIU, M.; ZHANG, F.; XU, Z.; FEN, L. Antiplasmodial and antimalarial activities of quinolone derivatives: An overview. European Journal of Medicinal Chemistry, v.146, p.1-14, 2018.
FUNG-TOMC, J. C.; MINASSIAN, B.; KOLEK, B.; HUCZKO, E.; ALEKSUNES, L.; STICKLE, T.; WASHO, T.; GRADELSKI, E.; VALERA, L.; BONNER, D. P. Antibacterial Spectrum of a Novel Des-Fluoro(6) Quinolone, BMS-284756. Antimicrobial Agents and Chemotherapy, v.44, n.12, p.3351-3356, 2000.
GAO, F.; ZHANG, X.; WANG, T.; XIAO, J. Quinolone hybrids and their anti-cancer activities: An overview. European Journal of Medicinal Chemistry, v.16, p.59-79, 2019.
GEDDIS, S. M.; COROAMA, T.; FORREST, S.; HODGKINSON, J. T.; WELCH, M.; SPRING, D. R. Synthesis and biological evaluation of 1,2-disubstituted 4-quinolone analogues of Pseudonocardia sp. natural products. Beilstein Journal Organic Chemistry, v.14, p.2680-2688, 2018.
HONG, W. D.; GIBBONS, P. D.; LEUNG, S. C.; AMEWU, R.; STOCKS, P. A.; STACHULSKI, A.; HORTA, P.; CRISTIANO, M. L. S.; SHONE, A. E.; MOSS, D.; ARDREY, A.; SHARMA, R.; WARMAN, A. J.; BEDINGFIELD, P. T. P.; FISHER, N. E.; ALJAYYOUSSI, G.; MEAD, S.; CAWS, M.; BERRY, N. G.; WARD, S. A.; BIAGINI, G. A.; O’NEILL, P. M.; NIXON, G. L. Rational Design, Synthesis, and Biological Evaluation of Heterocyclic Quinolones Targeting the Respiratory Chain of Mycobacterium tuberculosis. Journal of Medicinal Chemistry. v.60, p.3703−3726, 2017.
HONG, W. P.; SHIN, I. & LIM, H. N. Recent Advances in One-Pot Modular Synthesis of 2-Quinolones. Molecules, v.25, n.22, p.5450, 2020.
HORTA, P.; SECRIERU, A.; CONINCKX, A.; CRISTIANO, M. L. S. Quinolones for applications in medicinal chemistry: synthesis and structure. Targets in Heterocyclic Systems, v.22, p.260-297, 2018.
JAYASHREE, B. S.; THOMAS, S. & NAYAK, Y. Design and synthesis of 2-quinolones as antioxidants and antimicrobials: a rational approach. Medicinal Chemistry Research, v.19, p.193–209, 2010.
KERNS, R. J.; RYBAK, M. J.; KAATZ, G. W.; VAKA, F.; CHA, R.; GRUCZ, R. G.; DIWADKAR, V. U.; WARD, T. D. Piperazinyl-Linked Fluoroquinolone Dimers Possessing Potent Antibacterial Activity Against Drug-Resistant Strains of Staphylococcus aureus. Bioorganic & Medicinal Chemistry Letters, v.13, p.1745–1749, 2003.
KHAMKHENSHORNGPHANUCH, T.; KULKRAISRI, K.; JANJAMRATSAENG, A.; PLABUTONG, N.; THAMMAHONG, A.; MANADEE, K.; POMBEJRA, S.; KHOTAVIVATTANA, T. Synthesis and Antimicrobial Activity of Novel 4-Hydroxy-2-quinolone Analogs. Molecules, v.25, n.13, p.3059, 2020.
KIRBY, J. T.; MUTNICK, A. H.; JONES, R. N.; BIEDENBACH, D. J.; PFALLER, M. A.; THE SENTRY PARTICIPANTS GROUP. Geographic variations in garenoxacin (BMS284756) activity against pathogens associated with skin and soft tissue infections: report from SENTRY Antimicrobial Surveillance Program (2000). Diagnostic Microbiology and Infectious Disease. v.43, p.303-309, 2002.
KOIDE, K.; KONGSOI, S.; OUCHI, Y.; YAMAGUCHI, T.; NAKAJIMA, C.; SUZUKI, Y. Antibacterial Activity of DC-159a Against Salmonella Typhimurium. Microbial Drug Resistance, v.25, n.1, p.14-22, 2019.
KRISHNA, A. & SARVESWARI, S. One-pot synthesis of 2-amino-6-(1,2-dihydro-4-hydroxy-2-oxoquinolin-3-yl)-4-arylpyridine-3-carbonitriles catalyzed by NbCl5 and their in vitro antimicrobial studies. Chemistry Select, v.4, n.34, p.9987-9992, 2019.
LI, J & CLARK, B. R. Synthesis of Natural and Unnatural Quinolones Inhibiting the Growth and Motility of Bacteria. Journal of Natural Products. v.83, n.10, p.3181-3190, 2020.
MILLAR, B. C.; RENDALL, J. C.; D. G. DOWNEY, D. G.; MOORE, J. E. Does ivacaftor interfere with the antimicrobial activity of commonly used antibiotics against Pseudomonas aeruginosa? Results of an in vitro study. Journal of Clinical Pharmacy and Therapeutics. v.43, p.836–843, 2018.
PAIS, J. P.; POLICARPO, M.; PIRES, D.; FRANCISCO, A. P.; MADUREIRA, A. M.; TESTA, B.; ANES, E.; CONSTANTINO, L. Fluoroquinolone Derivatives in the Treatment of Mycobacterium tuberculosis Infection. Pharmaceuticals, 15, p.1213, 2022.
PANDA, S. S.; LIAQAT, S.; GIRGIS, A. S.; SAMIR, A.; HALL, C. D.; KATRITZKY, A. R. Novel antibacterial active quinolone–fluoroquinolone conjugates and 2D-QSAR studies. Bioorganic & Medicinal Chemistry Letters, v.25, p.3816–3821, 2015.
PETERSON, L. R. Quinolone Molecular Structure-Activity Relationships: What We Have Learned about Improving Antimicrobial Activity. Clinical Infectious Diseases, v.33, n.3, p.180–186, 2001.
PHAM, T. D. M.; ZIORA, Z. M. & BLASKOVICH, M. A. T. Quinolone antibiotics. Medicinal Chemistry Communications, v.10, p.1719–1739, 2019.
PINTILIE, L. Antimicrobial Agentes. National Institute of Chemical - Pharmaceutical Research and Development, Bucharest, Romania, c. 12, 2012.
PINTILIE, L. Quinolones: Synthesis and antibacterial activity. National Institute of Chemical - Pharmaceutical Research and Development, Bucharest, Romania, c. 12, p.252-272, 2012
PUCCI, M. J.; ACKERMAN, M.; THANASSI, J. A.; SHOEN, C, M.; CYNAMON, M. H. In Vitro Antituberculosis Activities of ACH-702, a Novel Isothiazoloquinolone, against Quinolone-Susceptible and Quinolone-Resistant Isolates. Antimicrobial Agents and Chemotherapy, v.54, n.8, p.3478–3480, 2010.
RAMOS, A. F.; WOODS, D. F.; SHANAHAN, R.; CANO, R.; MCGLACKEN, G. P.; SERRA, C.; O'GARA, F.; REEN, F. J. A structure-function analysis of interspecies antagonism by the 2-heptyl-4-alkyl-quinolone signal molecule from Pseudomonas aeruginosa. Microbiology, v.166, p.169–179, 2020.
RELITTI, N.; SARASWATI, A. P.; CHEMI, G.; BRINDISI, M.; BROGI, S.; HERP, D.; SCHMIDTKUNZ, K.; SACCOCCIA, F.; RUBERTI, G.; ULIVIERI, C.; VANNI, F.; SARNO, F.; ALTUCCI, L.; LAMPONI, S.; JUNG, M.; GEMMA, S.; BUTINI, S.; CAMPIANI, G. Novel quinolone-based potent and selective HDAC6 inhibitors: Synthesis, molecular modeling studies and biological investigation. European Journal of Medicinal Chemistry, 112998, 2020.
REZNIKOV, L. R.; ALAIWA, M. H. A.; DOHRN, C. L.; GANSEMER, N. D.; DIEKEMA, D. J.; STOLTZ, D. A.; WELSH, M. J. Antibacterial properties of the CFTR potentiator ivacaftor. Journal of Cystic Fibrosis. v.13, p.515-519, 2014.
RIOS, L. L.; OLIVEIRA, V. T. O.; MALTA, T. B.; SANTOS, G. P. DOS; FORTUNA, J. L. Isolation, identification, and susceptibility test to antimicrobials of pathogenic bacteria isolated from clothing worn by health professionals in a hospital environment. Brazilian Journal of Health Review, 3, 5, p.12999-13027, 2020.
SAXENA, N.; KUMAR, R.; SHANKHDHAR, S.; SRIVASTAVA, N. Synthesis of new 3-substituted quinolone derivatives with benzene sulfonamide group using hydrazine linker with their docking and antibacterial studies in vitro. Results in Chemistry, 4, 100397, 2022.
SINHA, N.; JAIN, S.; TILEKAR, A.; UPADHAYAYA, R. S.; KISHORE, N.; JANA, G. H.; ARORA, S. K. Synthesis of isonicotinic acid N’-arylidene-N-[2-oxo-2-(4-aryl-piperazin-1-yl)-ethyl]-hydrazides as antituberculosis agentes. Bioorganic Medicinal Chemistry Letters, v.15, p.1573–1576, 2015.
SODA, A. K.; KURVA, S.; SINGH, K.; VEERAGONI, D.; MISRA, S.; MURAHARI, M.; MADABHUSHI, S. Synthesis and Pharmacological Evaluation of Hexafluoro Functionalized Quinolone Derivatives as Potential Chemotherapeutic Agents. Chemistry Select, 7, e202201366, 2022.
SOUZA, S. A. A. DE; MARQUES, P. V. M.; GEBER, M. R. DE S.; DIAS, L. S.; MACIEL, A. C. M.; NEVES, D. S. DAS; SILVA, R. B. DA; VERAS, D. DA S. Manual techniques of respiratory physiotherapy in the removal of secretion in children with Cystic Fibrosis: a literature review. Brazilian Journal of Health Review, 5, 6, p. 22160–22169, 2022.
TAKAGI, H.; TANAKA, K.; TSUDA, H.; KOBAYASHI, H. Clinical studies of garenoxacin. International Journal of Antimicrobial Agents. v.32, p.468-474, 2008.
TAN, C-K.; LAI, C-C.; LIAO, C-H.; CHOU, C-H.; HSU, H-L.; HUANG, Y-T.; HSUEH, P-R. Comparative in vitro activities of the new quinolone nemonoxacin (TG-873870), gemifloxacin and other quinolones against clinical isolates of Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, v.64, p.428–435, 2009.
THAKARE, R.; SINGH, A. K.; DAS, S.; VASUDEVAN, N.; JACHAK, G. R.; REDDY, D. S.; DASGUPTA, A.; S CHOPRA, S. Repurposing Ivacaftor for treatment of Staphylococcus aureus infections. International Journal of Antimicrobial Agents, v.50, p.389–392, 2017.
THOMAS, K. D.; ADHIKARI, A. V.; TELKAR, S.; CHOWDHURY, I. H.; MAHMOOD, R.; PAL, N. K.; ROW, G.; SUMESH, E. Design, synthesis and docking studies of new quinolone-3-carbohydrazide derivatives as antitubercular agents. European Journal of Medicinal Chemistry, v.46, p.5283-5292, 2011.
VALADBEIGI, E. & GHODSI, S. Synthesis and Study of Some New Quinolone Derivatives Containing a 3-acetyl Coumarin for Their Antibacterial and Antifungal Activities. Iranian Journal of Pharmaceutical Research, v.16, n.2, p.554-564, 2017.
VOLKOVA, N.; MOY, K.; EVANS, J.; CAMPBELL, D.; TIAN, S.; SIMARD, C.; HIGGINS, M.; KONSTAN, M. W.; SAWICKI, G. S.; ELBERT, A.; CHARMAN, S. C.; MARSHALL, B. C.; BILTON, D. Disease progression in patients with cystic fibrosis treated with ivacaftor: Data from national US and UK registries. Journal of Cystic Fibrosis. v.19, p.68-79, 2020.
WANG, L.-L.; BATTINI, N.; BHEEMANABOINA, R. R. Y.; ZHANG, S.-L.; ZHOU, C.-H. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation. European Journal of Medicinal Chemistry, v.167, p.105-123, 2019.
WUBE, A.; HÜFNER, A.; SEEBACHER, S.; KAISER, M.; BRUN, R.; BAUER, R.; BUCAR, F. 1,2-Substituted 4-(1H)-Quinolones: Synthesis, Antimalarial and Antitrypanosomal Activities in Vitro. Molecules, v.19, p.14204-14220, 2014.
XU, K.; HE, S.; CHEN, S.; QIU, G.; SHI, J.; LIU, X.; WU, X.; ZHANG, J.; TANG, W. Free radical rearrangement synthesis and microbiological evaluation of novel 2-sulfoether-4-quinolone scaffolds as potential antibacterial agents. European Journal of Medicinal Chemistry, v.154, p.144-154, 2018.
ZANG, B. Quinolone derivatives and their antifungal activities: An overview. Archiv der Pharmazie - Chemistry in Life Sciences. 352:1800382, 2019.
ZHANEL, G. G.; FONTAINE, S.; ADAM, H.; SCHUREK, K.; MAYER, M.; NOREDDIN, A. M.; GIN, A. S.; RUBINSTEIN, E.; HOBAN, D. J. A Review of New Fluoroquinolones Focus on their Use in Respiratory Tract Infections. Treatments in Respiratory Medicine. v.5, n.6, p.437-465, 2006.
ZHANG, J.; BATTINI, N.; OU, J.; ZHANG, S.; ZHANG, L.; ZHOU; C. New Efforts toward Aminothiazolylquinolones with Multitargeting Antibacterial Potential. J. Agric. Food Chem., 71, p.2322−2332, 2023.
ZHAO, X. & YU, C. Vosaroxin induces mitochondrial dysfunction and apoptosis in cervical cancer HeLa cells: Involvement of AMPK/Sirt3/HIF-1 pathway. Chemico-Biological Interactions, v. 290, p.57–63, 2018.