Dietary restriction inhibits bone formation in alveolar bone modeling and remodelling

Authors

  • Juan Abel Garat
  • Silvia Romano
  • Ana Aybar Odstrcil

DOI:

https://doi.org/10.34119/bjhrv6n6-110

Keywords:

dietary restriction-bone, remodeling-histomorphometry

Abstract

Objective: Methods: Balb/C mice weaned at the age of 21 days were assigned to one of the following groups: control group fed a regular hard diet ad libitum (food consumption was measured daily), and dietary restricted group (DR) received 75% of the amount of food consumed by the respective control mice the previous day.  Body weight of all animals was recorded throughout. Mice were euthanized in groups of ten at 25 and 60 days of experience. Mandibles were dissected, descalcified in EDTA and embedded in paraffin. Buccolingual sections of the mesial root of the first lower molar were stained with hematoxylin-eosin and submitted to histomorphometric studies.  Results: At 25 days, DR mice shows bone formation values lower than control animals for modeling and remodeling sides, coupled to an increase with bone at rest values in the modeling side. At 60 days, DR mice shows bone formation values lower than control animals in the modeling side linked with a similar increase in values corresponding to bone resorption and bone at rest. In the remodeling side, no differences in bone formation were observed between control and DR mice. However, high bone resorption and a decrease in bone at rest areas were observed. Conclusions: Dietery restriction impaires bone formation in physiologic alveolar bone modeling and remodeling.

References

Meheris H, Pani M, Ruiz Holgado N, Lopez Miranda L, Martín A, Garat J. Mandibular Condylar Process And Tibia Bone Responses To Bone Loss Stimuli. A Histomorphometric Study In Growing Rats. Actual. Osteol. 2015; 11(2):125-135.

Meheris H, Pani M, Ruiz Holgado N, Lopez Miranda L, Martín A, Garat J. (2014)Facial development disorders due to inhibition to endochondral ossification of mandibular condyle process caused by malnutrition. The Angle Orthod. 2014; 84(3): 473-478.

Bozzini CE, Champin G, Alippi RM, Bozzini. Bone mineral density and bone strength from the mandible of chronically protein restricted rats. Acta Odontol Latinoam. 2011; 24(3):223-8.

Rubio-Gutierrez JC, Mendez-Hernández P, Guéguen Y, Galichon P, Tamayo-Ortiz M, Haupt K, Medeiros M, Barbier OC. Overview of Traditional and Environmental Factors Related to Bone Health. Environ Sci Pollut Res Int. 2022; 29(21):31042-31058. doi: 10.1007/s11356-022-19024-1.

Guedes PMSG, Zamarioli A, Botega II, Silva RABD, Issa JPM, Butezloff MM, Sousa YTCS, Ximenez JPB, Volpon JB Undernutrition impairs the quality of growth plate and trabecular and cortical bones in growing rats1. Acta Cir Bras. 2019; 34(3).

Noguchi C, Matsue K, Nakanishi Y, Asanuma F, Miyata H, Sasaki M.Characterization of 5-Fluorouracil Daily Oral Dosing versus Dietary Restriction on Femoral Growth Plates in Rats. Toxicol Pathol. 2019 Jan; 47(1):73-81.

Alippi RM, Meta MD, Olivera MI, Bozzini C, Shneider P, Meta I, Bozzini C. Effect of protein-energy malnutrition in early life on the dimensions and bone quality of the adult rat mandible. Arch. Oral Biol 2002; 47: 47-53.

Antona ME, Ramos C, Stranges A, Monteiro AF, Gonzales Chaves MM, Mandalunis P, Zago V, Friedman SM, Macri EV. Fish oil diet effects on alveolar bone loss, in hypercholesterolemic rats. Arch Oral Biol. 2020; 109:104553. doi: 10.1016/j.archoralbio.2019.104553

Lira Dos Santos EJ, Chavez MB, Tan MH, Mohamed FF, Kolli TN, Foster BL, Liu ES. Effects of Active Vitamin D or FGF23 Antibody on Hyp Mice Dentoalveolar Tissues. J Dent Res. 2021 ;100(13):1482-1491. doi: 10.1177/00220345211011041.

Xue F, Zhao Z, Gu Y, Han J, Ye K, Zhang Y . 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. Elife. 2021. 6;10:e64872. doi: 10.7554/eLife.64872

Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021; 9(9):606-621. doi: 10.1016/S2213-8587(21)00119-4.

Ubios AM, Guglielmotti MB, Steimetz T, Cabrini RL. Uranium inhibits bone formation in physiological alveolar bone modelling and remodelling. Environ. Res. 1991; 54: 17-23.

Cabrini RL, Ubios AM, Guglielmotti B. Effects of diphosphonate on the prevention of X- radiation-induced inhibition of bone formation in rats. J Oral Patol. 1986; 15:500-505.

Guglielmotti B, Ubios AM, de Rey BM, Cabrini RL. Effects of acute intoxication with uranyl nitrate on bone formation. Experientia. 1983; 40:474-476.

Mandalunis PM, Cabrini RL, Ubios AM. Iron overloading inhibits endochondral ossification. Acta Odontol Latinoam. 1997; 10:55-61. .

Garat JA, Meheris H, Pani M, Martin AE. Characterization of a model of regeneration of periodontal tissues following an experimentally induced periodontitis in rats. A morphometric study. Rev Odontol Universidade de Sao Paulo. 2005; 17:119-125.

Garat J, Gordillo ME, Ubios AM. Bone response to different strength orthodontic forces in animals with periodontitis. J Periodont Res. 2005; 40: 441-445.

Weibel ER, Elias H. Introduction to Stereology and Morphology. In “Quantitative Methods in Morphology” pp.3-19. Springer-Verlag, Heidelberg.

Santos, JF, Ferreira-Machada, SC, Salata, C., Parreiras Nogueira, L., Lau, CSC, Appoloni, CR y Torres, TDS. RANKL/OPG signaling affects the bone structure in rat model of mandibular osteoradionecrosis. BJHR. 2022; 5 (1), 2258-2276.

Zhou P, Zheng T, Zhao B. Cytokine-mediated immunomodulation of osteoclastogenesis. Bone. 2022; 4:116540. doi: 10.1016/j.bone.2022.116540.

Hagel-Bradway S, Dziak R. Regulation of bone cell metabolism. J. Oral Pathol. 1989; 18, 344-351.

Chen T, Wang Y, Hao Z, Hu Y, Li J. Parathyroid hormone and its related peptides in bone metabolism. Biochem Pharmacol. 2021; 192:114669. doi: 10.1016/j.bcp.2021.114669.

Lombardi G, Ziemann E, Banfi G, Corbetta S. Physical Activity-Dependent Regulation of Parathyroid Hormone and Calcium-Phosphorous Metabolism. Int J Mol Sci. 2020; 21(15):5388. doi: 10.3390/ijms21155388.

Karsenty G, Khosla S. The crosstalk between bone remodeling and energy metabolism: A translational perspective. Cell Metab. 2022; 34(6):805-817. doi: 10.1016/j.cmet.2022.04.010.

Wee NKY, de Lima TFC, McGregor NE, Walker EC, Poulton IJ, Blank M, Sims NA. Leptin receptor in osteocytes promotes cortical bone consolidation in female mice. J Endocrinol. 2022; 255(1):25-37. doi: 10.1530/JOE-22-0084.

Han Y, Huang Y, Gao P, Yang Q, Jia L, Zheng Y, Li W. Leptin Aggravates Periodontitis by Promoting M1 Polarization via NLRP3. J Dent Res. 2022; 101(6):675-685. doi: 10.1177/00220345211059418.

Giovanna Ganem Favero, Isabela Lopes Martin, Fernanda Pereira da Silva Albino, Carlos Eduardo Fontana, Sérgio Luiz Pinheiro, Giovanna Rosa Degasperi. Leptin's and antigen-presenting cells' functions in periodontitis–an overview . BJHR. 2021; 4 (2): 8011-8019.

Downloads

Published

2023-11-15

How to Cite

Garat, J. A., Romano, S., & Odstrcil, A. A. (2023). Dietary restriction inhibits bone formation in alveolar bone modeling and remodelling. Brazilian Journal of Health Review, 6(6), 27922–27931. https://doi.org/10.34119/bjhrv6n6-110

Issue

Section

Original Papers