Neuroplasticidade após lesão cerebral traumática: mecanismos e implicações para reabilitação

Autores/as

  • Lara Venancio Valadão
  • Natascha Martins Sardi
  • Taísa Vieira Garcia
  • Felipe Monnerat Campos
  • Isabelle Amannda Cardoso de Sousa
  • Isadora de Marchi Pimenta
  • Thais Fernanda Silva Magalhães de Souza
  • Mirian Alejandra
  • Igor Specht Taschetto
  • Eduardo Takeshi Nikaido
  • Laura Pazianoto de Vilhena
  • Kelly Lisboa
  • Marcelle Gazzineo Dal Farra
  • Thalyssa Figueiredo Magalhães

DOI:

https://doi.org/10.34119/bjhrv6n4-407

Palabras clave:

neuroplasticidade, lesão cerebral traumática, reabilitação, brotação axonal, estimulação cerebral

Resumen

A neuroplasticidade, ou capacidade do cérebro de se reorganizar e adaptar, é um tópico fundamental quando consideramos a recuperação de indivíduos após uma lesão cerebral traumática (LCT). Esta revisão aborda os mecanismos intrincados pelos quais o cérebro manifesta plasticidade após LCT, como brotação axonal, reorganização somatossensorial e gênese de neurônios. Além disso, são discutidas várias abordagens terapêuticas, incluindo terapia física, estimulação cerebral e terapias farmacológicas, que visam otimizar essa capacidade adaptativa. As diferenças na manifestação de neuroplasticidade entre crianças e adultos também são destacadas, enfatizando a necessidade de abordagens personalizadas na reabilitação pós-LCT. Através da análise da literatura atual, torna-se evidente que, enquanto a neuroplasticidade oferece oportunidades significativas para recuperação, também apresenta desafios, particularmente em termos de potencial reorganização mal adaptativa. Esta revisão destaca a importância de uma compreensão profunda da neuroplasticidade para desenvolver e refinar estratégias de reabilitação, com o objetivo final de melhorar os desfechos e a qualidade de vida dos pacientes afetados por LCT.

Citas

ANDERSON, V., SPENCER-SMITH, M., & WOOD, A. (2005). Do children really recover better? Neurobehavioral plasticity after early brain insult. Brain, 128(8), 2197-2221.

BATH, K. G., MANDAIRON, N., JING, D., RAJAGOPAL, R., KAPOOR, R., CHEN, Z. Y., ... & LEE, F. S. (2008). Variant brain-derived neurotrophic factor (Val66Met) alters adult olfactory bulb neurogenesis and spontaneous olfactory discrimination. Journal of Neuroscience, 28(10), 2383-2393.

BÜTEFISCH, C. M., WEßLING, M., NETZ, J., SEITZ, R. J., & HÖMBERG, V. (2005). Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabilitation and Neural Repair, 19(1), 4-21.

CARMICHAEL, S. T. (2003). Plasticity of cortical projections after stroke. Neuroscientist, 9(1), 64-75.

CARMICHAEL, S. T. (2006). Cellular and molecular mechanisms of neural repair after stroke: making waves. Annals of Neurology, 59(5), 735-742.

CRAMER, S. C., SUR, M., DOBKIN, B. H., O'BRIEN, C., SANGER, T. D., TROJANOWSKI, J. Q., ... & VINOGRADOV, S. (2011). Harnessing neuroplasticity for clinical applications. Brain, 134(6), 1591-1609.

DOBKIN, B. H. (2004). Strategies for stroke rehabilitation. The Lancet Neurology, 3(9), 528-536.

FLOR, H., ELBERT, T., KNECHT, S., WIENBRUCH, C., PANTEV, C., BIRBAUMER, N., ... & TAUB, E. (1995). Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature, 375(6531), 482-484.

GAGE, F. H. (2000). Mammalian neural stem cells. Science, 287(5457), 1433-1438.

GREFKES, C., & FINK, G. R. (2011). Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain, 134(5), 1264-1276.

JOHNSTON, M. V. (2009). Plasticity in the developing brain: Implications for rehabilitation. Developmental Disabilities Research Reviews, 15(2), 94-101.

JOHNSTON, M. V. (2011). Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurologica Scandinavica, 123(3), 147-159.

JONES, T. A. (2017). Motor compensation and its effects on neural reorganization after stroke. Nature Reviews Neuroscience, 18(5), 267-280.

KERNIE, S. G., & PARENT, J. M. (2010). Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiology of Disease, 37(2), 267-274.

KIM, Y. H., PARK, J. W., KO, M. H., JANG, S. H., & LEE, P. K. (2010). Plastic changes of motor network after constraint-induced movement therapy. Yonsei Medical Journal, 51(3), 405-412.

KLEIM, J. A., & JONES, T. A. (2008). Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. Journal of Speech, Language, and Hearing Research, 51(1), S225-S239.

KRACKAUER, J. W. (2006). Motor learning: its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology, 19(1), 84-90.

MAAS, A. I., STOCCHETTI, N., & BULLOCK, R. (2008). Moderate and severe traumatic brain injury in adults. The Lancet Neurology, 7(8), 728-741.

MERZENICH, M. M., NELSON, R. J., STRYKER, M. P., CYNADER, M. S., SCHOPPMANN, A., & ZOOK, J. M. (1984). Somatosensory cortical map changes following digit amputation in adult monkeys. Journal of Comparative Neurology, 224(4), 591-605.

MURPHY, T. H., & CORBETT, D. (2009). Plasticity during stroke recovery: from synapse to behaviour. Nature Reviews Neuroscience, 10(12), 861-872.

NUDO, R. J. (2006). Mechanisms for recovery of motor function following cortical damage. Current Opinion in Neurobiology, 16(6), 638-644.

NUDO, R. J. (2011). Neural bases of recovery after brain injury. Journal of Communication Disorders, 44(5), 515-520.

PARENT, J. M., ELLIOTT, R. C., PLEASURE, S. J., BARBARO, N. M., & LOWENSTEIN, D. H. (2006). Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Annals of Neurology, 59(1), 81-91.

PASCUAL-LEONE, A., AMEDI, A., FREGNI, F., & MERABET, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377-401.

RAMACHANDRAN, V. S., & ROGERS-RAMACHANDRAN, D. (2000). Phantom limbs and neural plasticity. Archives of Neurology, 57(3), 317-320.

SPALDING, K. L., BERGMANN, O., ALKASS, K., BERNARD, S., SALEHPOUR, M., HUTTNER, H. B., ... & FRISÉN, J. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6), 1219-1227.

TAUB, E., USWATTE, G., & PIDIKITI, R. (1999). Constraint-Induced Movement Therapy: a new family of techniques with broad application to physical rehabilitation--a clinical review. Journal of Rehabilitation Research and Development, 36(3), 237-251.

THICKBROOM, G. W. (2007). Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Experimental Brain Research, 180(4), 583-593.

WARD, N. S., & COHEN, L. G. (2004). Mechanisms underlying recovery of motor function after stroke. Archives of Neurology, 61(12), 1844-1848.

WHYTE, J., MYERS, R., & BLAME, M. (2012). The efficacy of D-Cycloserine to enhance cognitive recovery after traumatic brain injury. Brain Research Bulletin, 87(4-5), 345-352.

ZHAO, C., DENG, W., & GAGE, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4), 645-660.

ZHANG, R., & CHOPP, M. (2002). Neuroprotective effects of ischemic preconditioning on global brain ischemia in rats. Stroke, 33(2), 552-557.

ZEILER, S. R., & KRAKAUER, J. W. (2013). The interaction between training and plasticity in the poststroke brain. Current Opinion in Neurology, 26(6), 609-616.

ZIEMANN, U., & SIEBNER, H. R. (2008). Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimulation, 1(1), 60-66.

Publicado

2023-08-30

Cómo citar

VALADÃO, L. V.; SARDI, N. M.; GARCIA, T. V.; CAMPOS, F. M.; DE SOUSA, I. A. C.; PIMENTA, I. de M.; DE SOUZA, T. F. S. M.; ALEJANDRA, M.; TASCHETTO, I. S.; NIKAIDO, E. T.; DE VILHENA, L. P.; LISBOA, K.; FARRA, M. G. D.; MAGALHÃES, T. F. Neuroplasticidade após lesão cerebral traumática: mecanismos e implicações para reabilitação. Brazilian Journal of Health Review, [S. l.], v. 6, n. 4, p. 19178–19191, 2023. DOI: 10.34119/bjhrv6n4-407. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/62591. Acesso em: 18 may. 2024.

Número

Sección

Artículos