Antioxidant activity and health effects from Malpighia emarginata fruit – a systematic review

Authors

  • Ana Cássia Mantovani Malaguti
  • Paula Fernandes Montanher
  • Andreia Anschau
  • Milene Oliveira Pereira

DOI:

https://doi.org/10.34119/bjhrv6n2-220

Keywords:

antioxidants, chronic disorders, acerola fruits, oxidative stress

Abstract

Acerola (Malpighia emarginata) is considered a superfruit due to high vitamin C content and the presence of phenolics that confer antioxidant potential. Increasing of chronic disorders and results of oxidative stress-related diseases has encouraged the search of new pharmacological strategies to face them. The present review discusses the available knowledge on health effects of Malpighia emarginata, including both in vivo and in vitro studies. Records in 1945–2022 were extracted from Web of Science and Scopus databases to get the bibliometric index of the published articles. In spite of bibliometric analysis advantages to knowing about the trends in a subject, this research requires methods to support the investigation process through the selection of a relevant bibliographic portfolio. This study also applied the Methodi Ordinatio which provides an approach to rank 29 relevant publications. Fifty-one research articles were reviewed. Much knowledge comes from in vitro explorations, such as chemical assays evaluating radical scavenging properties, glycemic and lipid oxidation inhibition, and reducing capacity of acerola fruit; similarly, research on cellular substrates and animal models generally measures antioxidant enzymes levels and other antioxidant markers, such as α-glycosidase and advanced glycation end products. Reviewed data suggest that some acerola fruit compounds are deserving of further investigation and more useful understanding of their antioxidant and neuroprotective potentials.

References

Alvarez, S.J.M., Giampieri, F., Gasparrini, M., Mazzoni, L., Santos-Buelga, C. (2017). The protective effect of acerola (Malpighia emarginata) against oxidative damage in human dermal fibroblasts through the improvement of antioxidant enzyme activity and mitochondrial functionality. Food Funct, 8(9):3250–3258.

Barbalho, S.M., Damasceno, D.C., Spada, A.P.M., Palhares, M., Martuchi, K.A. (2011). Evaluation of glycemic and lipid profile of offspring of diabetic wistar rats treated with Malpighia emarginata juice. Exp Diabetes Res, doi: 10.1155/2011/173647.

Barbosa, J.H.P., Oliveira, S.L., Seara, L.T. (2008). The role of advanced glycation end-products (AGEs) in the development of vascular diabetic complications. Arq Bras Endocrinol Metab, 52(6):940-950.

Barros, B.R.S., Barboza, B.R., Ramos, B.A., Moura, M.C., Coelho, L.C.B.B.(2019). Saline extract from Malpighia emarginata DC leaves showed higher polyphenol presence, antioxidant and antifungal activity and promoted cell proliferation in mice splenocytes. Annals of the Brazilian Academy of Sciences, 91(1).

Barros, B.R.S., Nascimento, D.K.D., Araújo, D.R.C., Batista, F.R.C., Lima, A.M.N.O. (2020). Phytochemical analysis, nutritional profile and immunostimulatory activity of aqueous extract from Malpighia emarginata DC leaves. Biocatal Agric Biotechnol, 2020, 23:101442

Batista, A.C.V., Ribeiro, M.A., Oliveira, K.C., Freitas, P.A., Santos, N.S. (2021). Effects of consumption of acerola, cashew and guava by-products on adiposity and redox homeostasis of adipose tissue in obese rats. Clin Nutr ESPEN, 43:283-289.

Batista, K.S., Alves, A.F., Lima, M.D., Silva, L.A., Lins, P.P. (2018) Beneficial effects of consumption of acerola, cashew or guava processing by-products on intestinal health and lipid metabolism in dyslipidaemic female Wistar rats. Br J Nutr, 119(1):30-41.

Bianchi, F., Lopes, N.P., Adorno, M.A.T., Sakamoto, I.K., Genovese, M.R. (2019). Impact of combining acerola by-product with a probiotic strain on a gut microbiome model. Int J Food Sci Nutr, 70(2):182-194.

Brazilian Society for the Study of Obesity and Metabolic Syndrome (ABESO). https://abeso.org.br/. Accessed March 30, 2022.

Brownell, K.D., Farley, T., Willet, W.C., Popkin, B.M., Chaloupka, F.J. (2009). The public health and economic benefits of taxing sugar-sweetened beverages. N Engl J Med, 361(16):1599-1605.

Chang, S.K., Alasalvar, C., Shahidi, F. (2019). Superfruits: Phytochemicals, antioxidant efficacies, and health effects – A comprehensive review. Crit Rev Food Sci Nutr, 59(10):1580-1604.

Costa, A., Lindmark, L., Arruda, L.H.F., Assumpção, E.C., Ota, F.S. (2012). Clinical, biometric and ultrasound assessment of the effects of daily use of a nutraceutical composed of lycopene, acerola extract, grape seed extract and Biomarine Complex in photoaged human skin. Anais Brasileiros de Dermatologia, 87(1), 52–61. https://doi.org/10.1590/s0365-05962012000100006

Costa, A., Pereira, E.S.P., Fávaro, R., Pereira, M.O., Stocco, P.L. (2011). Treating cutaneous photoaging in women with an oral supplement based on marine protein, concentrated acerola, grape seed extract and tomato extract, for 360 days. Surg Cosmeti Dermatol, 3(4):302-11.

Cruz, R.G., Beney, L., Gervais, P., Lira, S.P., Vieira, T.M.F.S. (2019). Comparison of the antioxidant property of acerola extracts with synthetic antioxidants using an in vivo method with yeasts. Food Chem, 277(30):698-705.

Dias, F.M., Leffa, D.D., Daumann, F., Marques, S.O., Luciano, T.F. (2014). Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet. Lipids Health Dis, 4:13-24.

Ferreira, T.S., Lana, S.R.V., Lana, G.R.Q., Madalena, J.A., Silva, L.C.L. (2019). Acerola residue in feed for quails. Arq Bras Med Vet Zootec, 71(01): 259-266.

Fonteles, T.V., Filho, E.G.A., Barroso, M.K.A., Linhares, M.F.D., Rabelo, M.C. (2021). Protective effect of inulin on thermally treated acerola juice: in vitro bioaccessibility of bioactive compounds. Food Biosci, 41:101018.

Hanamura, T., Hagiwara, T., Kawagishi, H. (2005). Structural and functional characterization of polyphenols isolated from acerola (Malpighia emarginata DC.) fruit. Biosc, Biotech and Biochem, 69(2):280–286.

Hanamura, T., Mayama, C., Aoki, H., Hirayama, Y., Shimizu, M. (2006). Antihyperglycemic effect of polyphenols from acerola (Malpighia emarginata DC.) fruit. Biosci Biotechnol Biochem, 70(8):1813-1820.

Hanamura, T., Uchida, E., Aoki, H. (2008). Skin-lightening effect of a polyphenol extract from acerola (Malpighia emarginata DC.) fruit on UV-induced pigmentation. Biosci Biotechnol Biochem, 72(12):3211-3218.

Hu, Y., Yin, F., Liu, Z., Xie, H., Xu, Y. (2020). Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice. Food Funct, 11(1):1037-1048.

Hwang, J., Hodis, H.N., Sevanian, A. (2001). Soy and alfalfa phytoestrogen extracts become potent low-density lipoprotein antioxidants in the presence of acerola cherry extract. J Agric Food Chem, 49(1):308-314.

IARC. (2022) International Agency for Research on Cancer. https://www.iarc.who.int/. Accessed March 25, 2022.

Johner, K., Neto, C.F.G. (2021). Analysis of risk factors for skin aging: nutritional aspects. Brazilian Journal of Health Review, 4(3): 10000-10018.

Khansari, N., Shakiba, Y., Mahmoudi, M. (2009). Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Drug Discov, 3(1):73-80.

Klosterhoff, R.R., Bark, J.M., Glanzel, N.M., Iacomini, M., Martinez, G.R. (2018) Structure and intracellular antioxidant activity of pectic polysaccharide from acerola (Malpighia emarginata). Int J Biol Macromol, 106:473-480.

Klosterhoff, R.R., Kanazawa, L.K.S., Furlanetto, A.L.D.M., Peixoto, J.V.C., Corso, C.R. (2018). Anti-fatigue activity of an arabinan-rich pectin from acerola (Malpighia emarginata). Int J Biol Macromol, 1(109):1147-1153.

Leal, I.F., Rocha, V.S., Santa, A.L.A., Castro, D.E.S. (2021). Acerola seed meal (Malpighia emarginata) as a source of dietary fibre in starter piglet diets. Semina. Ciências Agrárias, 42:1209-1228.

Leffa, D.D., Rezin, G.T., Daumann, F., Longaretti, L.M., Dajori, A.L.F. (2017). Effects of acerola (Malpighia emarginata DC.) juice intake on brain energy metabolism of mice fed a cafeteria diet. Mol Neurobiol, 54(2):954-963.

Leffa, D.D., Silva, J., Daumann, F., Dajori, A.L.F., Longaretti, L.M. (2014). Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet. Mutat Res, 770:144-152.

Lima, M.C., Magnani, M., Lima, M.S., Sousa, C.P. (2021). Phenolic-rich extracts from acerola, cashew apple and mango by-products cause diverse inhibitory effects and cell damages on enterotoxigenic Escherichia coli, Appl Microbiol, 75(3):565-577.

Marques, T.R., Caetano, A.A., Cesar, P.H.S., Braga, M.A., Machado, G.H.A. (2018). Antioxidant activity and hepatoprotective potential of lyophilized extract of acerola bagasse against CCl4-induced hepatotoxicity in Wistar rats. J Food Biochem, 42(6).

Marques, T.R., Caetano, A.A., Simão, A.A., Castro, F.C.O., Ramos, V.O. (2016). Metanolic extract of Malpighia emarginata bagasse: phenolic compounds and inhibitory potential on digestive enzymes. Rev. bras. farmacogn, 26(2).

Marques, T.R., Cesar, P.H.S., Braga, M.A., Marcussi, S., Corrêa, A.D. (2018). Fruit bagasse phytochemicals from Malpighia emarginata rich in enzymatic inhibitor with modulatory action on hemostatic processes. J Food Sci, 0(0):1-10.

Mazza, P.H.S., Jaeger, S.M.P.L., Silva, A.M.B., Nascimento, T.V.C., Hora, D.I.C. (2020). Effect of dehydrated residue from acerola (Malpighia emarginata DC.) fruit pulp in lamb diet on intake, ingestive behavior, digestibility, ruminal parameters and N balance. Livest Sci, 233:103938.

Mezadri, T., Fernández P.M.S., Villãno, D., García, P.M,C,, Troncoso, A.M. (2006). El fruto de la acerola: composición, características productivas e importancia económica. Arch Latinoam Nutr, 56(2):101-109.

Motohashi, N., Wakabayashi, H., Kurihara, R., Fukushima, H., Yamada, T. (2004). Biological activity of barbados cherry (acerola fruits, fruit of Malpighia emarginata DC) extracts and fractions. Phytother Res, 18(3):212-223.

Moura, L.M.L., Pereira, F.D.S., Lima, P.R., Nascimento, J.C.S., Oliveira, A.S. (2020). Sodium hydroxide or urea pretreatment of acerola (Malpighia emarginata) fruit residue increases dry matter degradability and reduces methane production in in vitro rumen fermentation. Trop Anim Health Prod, 52(5):2433-2441.

Prakash, A., & Baskaran, R. (2019). Acerola, an untapped functional superfruit: a review on latest frontiers. J Food Sci. Technol., 55(9):3373-3384.

Sabino, L.B.S., Gonzaga, M.L.C., Oliveira, L.S., Duarte, A.S.G., Silva, M.L.A. (2020). Polysaccharides from acerola, cashew apple, pineapple, mango and passion fruit co-products: Structure, cytotoxicity and gastroprotective effects. Bioact. Carbohydr Diet Fibre, 24, 100228.

Silva, L.M.R., Lima, J.S.S., Magalhães, F.R.A., Campos, A.R., Araújo, J.I.F. (2020). Graviola fruit bar added acerola by-product extract protects against inflammation and nociception in adult zebrafish (Danio rerio). J Med Food, 23(2):173-180.

Souza, N.C., Nascimento, E.D.O., Oliveira, I.B., Oliveira, H.M.L., Santos, E.G.P. (2020). Anti-inflammatory and antixidant properties of blend formulated with compounds of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biomed Pharmacother, 128:110277.

Taguchi V. Cidade do Paraná larga o negócio de frangos e vira capital da acerola. Disponível em: <https://economia.uol.com.br/noticias/redacao/2021/10/26/cidade-do-parana-larga-o-negocio-de-frangos-e-vira-capital-da-acerola.htm>. Accessed November 21, 2021.

Taillie, L.S., Busey, E., Stoltze, F.M., Carpentier, F.R.D. (2019). Governmental policies to reduce unhealthy food marketing to children. Nutr Rev, 77(11):787-816.

Takino, Y., Aoki, H., Kondo, Y., Ishigami, A. (2020). Acerola (Malpighia emarginata DC.) Promotes Ascorbic Acid Uptake into Human Intestinal Caco-2 Cells via Enhancing the Gene Expression of Sodium-Dependent Vitamin C Transporter 1. J Nutr Sci Vitaminol, 66(4):296-299.

Umezu, T. (2021). Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Mol Ther Methods Clin Dev., 10(21):199-208.

Vieira, A.D.S., Battistini, C., Bedani, R., Saad, A.M.I. (2021). Acerola by-product may improve the in vitro gastrointestinal resistance of probiotic strains in a plant-based fermented beverage. LWT, 141.

Vieira, A.D.S., Souza, C.B., Padilha, M., Zoetendal, E.G., Smidt, H. (2021). Impact of a fermented soy beverage supplemented with acerola by-product on the gut microbiota from lean and obese subjects using an in vitro model of the human colon. Appl Microbiol Biotechnol, 105:3771–3785.

World Obesity Atlas. World Federation of Obesity. (2022). Press release. https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2022. Accessed March 30, 2022.

Downloads

Published

2023-04-10

How to Cite

MALAGUTI, A. C. M.; MONTANHER, P. F.; ANSCHAU, A.; PEREIRA, M. O. Antioxidant activity and health effects from Malpighia emarginata fruit – a systematic review. Brazilian Journal of Health Review, [S. l.], v. 6, n. 2, p. 7220–7237, 2023. DOI: 10.34119/bjhrv6n2-220. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/58765. Acesso em: 13 may. 2024.

Issue

Section

Original Papers