Inteligência artificial e diagnóstico do glaucoma

Authors

  • Clerimar Paulo Bragança
  • José Manuel Torres
  • Christophe Pinto de Almeida Soares

DOI:

https://doi.org/10.34115/basrv7n2-017b

Keywords:

deep learning, glaucoma, fundoscopia

Abstract

O progresso dos algoritmos de inteligência artificial (IA) no processamento de imagens digitais e nos estudos de diagnóstico automático da doença ocular glaucoma vem crescendo e apresentando avanços essenciais para garantir um melhor atendimento clínico a população. Diante do contexto, este artigo descreve os principais tipos de glaucoma existentes e as formas tradicionais de diagnóstico. Apresenta também a epidemiologia mundial da doença e como os estudos com algoritmos de IA vêm sendo investigados como uma possível ferramenta para auxiliar no diagnóstico precoce desta patologia por meio de triagens populacionais. Portanto, a seção de trabalhos relacionados apresenta os principais estudos e metodologias utilizadas na classificação automática do glaucoma a partir de imagens digitais de fundo de olho e algoritmos de IA, bem como as principais bases de dados contendo imagens rotuladas para o glaucoma e disponíveis publicamente para treinamento dos algoritmos de aprendizado de máquinas.

References

TAN, Nicholas YQ et al. Glaucoma screening: where are we and where do we need to go?. Current opinion in ophthalmology, v. 31, n. 2, p. 91-100, 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31904596/

HEIJL, Anders; BENGTSSON, Boel; OSKARSDOTTIR, Sigridur Erla. Prevalence and severity of undetected manifest glaucoma: results from the early manifest glaucoma trial screening. Ophthalmology, v. 120, n. 8, p. 1541-1545, 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S0161642013000584

KANSKI, Jack J.; BOWLING, Brad. Clinical ophthalmology: a systematic approach. Elsevier Health Sciences, 2011.

GIORGIS, Abeba T. et al. Results from the first teleglaucoma pilot project in Addis Ababa, Ethiopia. Journal of Glaucoma, v. 28, n. 8, p. 701-707, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31082882/

SMITH, Austen M.; CZYZ, Craig N. Neuroanatomy, cranial nerve 2 (Optic). In: StatPearls [Internet]. StatPearls Publishing, 2022. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK507907/

SBC. Manual De Exame Em Glaucoma. Sociedade Brasileira de Glaucoma, 2015. Disponível em: https://www.sbglaucoma.org.br/wp-content/uploads/2015/10/Manual_de_Exames_Glaucoma_SBG.pdf

OSHIKA, Tetsuro; YOSHITOMI, Fumiaki; OKI, Kohtaro. The pachymeter guide: a new device to facilitate accurate corneal thickness measurement. Japanese journal of ophthalmology, v. 41, n. 6, p. 426-427, 1997. Disponível em: https://www.sciencedirect.com/science/article/pii/S0021515597000749

LI, Fei et al. Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC medical imaging, v. 18, p. 1-7, 2018. Disponível em: https://link.springer.com/article/10.1186/s12880-018-0273-5

GARWAY-HEATH, David F. Early diagnosis in glaucoma. Progress in brain research, v. 173, p. 47-57, 2008. Disponível em: https://www.sciencedirect.com/science/article/pii/S0079612308011059

SCHUSTER, Alexander K. et al. The diagnosis and treatment of glaucoma. Deutsches Ärzteblatt International, v. 117, n. 13, p. 225, 2020. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196841/

KHALIL, Tehmina et al. Improved automated detection of glaucoma from fundus image using hybrid structural and textural features. IET Image Processing, v. 11, n. 9, p. 693-700, 2017. Disponível em: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ipr.2016.0812

Tinku Remo Susanna Jr and Alberto Diniz Filho. Simplificando o diagnóstico e tratamento do glaucoma. Cultura Médica, 2019. x, 53, 54. Disponível em: https://issuu.com/culturamedica/docs/simplificandoglaucoma

TATHAM, Andrew J.; WEINREB, Robert N.; MEDEIROS, Felipe A. Strategies for improving early detection of glaucoma: the combined structure–function index. Clinical ophthalmology, p. 611-621, 2014. Disponível em: https://www.tandfonline.com/doi/abs/10.2147/OPTH.S44586

TOPOUZIS, F. Glaucoma–The Importance of Early Detection and Early Treatment. Journal-Glaucoma–The Importance of Early Detection and Early Treatment, 2007. Disponível em: https://www.touchophthalmology.com/wp-content/uploads/sites/16/2015/07/topouzis-2.pdf

WORLD HEALTH ORGANIZATION et al. World report on vision. 2019. Disponível em: https://www.who.int/docs/default-source/documents/publications/world-vision-report-accessible.pdf

ALVAREDO, Facundo et al. (Ed.). World inequality report 2018. Belknap Press, 2018. Disponível em: https://wid.world/document/world-inequality-report-2018-english/

VAAHTORANTA‐LEHTONEN, Hanna et al. Cost effectiveness and cost utility of an organized screening programme for glaucoma. Acta Ophthalmologica Scandinavica, v. 85, n. 5, p. 508-518, 2007. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0420.2007.00947.x

ZALESKA-ŻMIJEWSKA, Anna et al. A new platform designed for glaucoma screening: identifying the risk of glaucomatous optic neuropathy using fundus photography with deep learning architecture together with intraocular pressure measurements. Klinika Oczna/Acta Ophthalmologica Polonica, v. 122, n. 1, p. 1-6, 2020. Disponível em: https://www.termedia.pl/Journal/-124/pdf-40290-10?filename=A%20new%20platform.pdf

GEDDE, Steven J. et al. Primary open-angle glaucoma preferred practice pattern®. Ophthalmology, v. 128, n. 1, p. P71-P150, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34933745/

MCCARTHY, John et al. A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, v. 27, n. 4, p. 12-12, 2006. Disponível em: https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1904

BREIMAN, Leo. Random forests. Machine learning, v. 45, p. 5-32, 2001. Disponível em: https://link.springer.com/article/10.1023/a:1010933404324

COVER, Thomas; HART, Peter. Nearest neighbor pattern classification. IEEE transactions on information theory, v. 13, n. 1, p. 21-27, 1967. Disponível em: https://ieeexplore.ieee.org/abstract/document/1053964/

CORTES, Corinna; VAPNIK, Vladimir. Support-vector networks. Machine learning, v. 20, p. 273-297, 1995. Disponível em: https://link.springer.com/article/10.1007/BF00994018

SARITAS, Mucahid Mustafa; YASAR, Ali. Performance analysis of ANN and Naive Bayes classification algorithm for data classification. International journal of intelligent systems and applications in engineering, v. 7, n. 2, p. 88-91, 2019. Disponível em: https://ijisae.org/IJISAE/article/view/934

LECUN, Yann et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, v. 86, n. 11, p. 2278-2324, 1998. Disponível em: https://ieeexplore.ieee.org/abstract/document/726791/

RUSSAKOVSKY, Olga et al. Imagenet large scale visual recognition challenge. International journal of computer vision, v. 115, p. 211-252, 2015. Disponível em: https://link.springer.com/article/10.1007/s11263-015-0816-y

GOODFELLOW, Ian et al. Generative adversarial networks. Communications of the ACM, v. 63, n. 11, p. 139-144, 2020. Disponível em: https://dl.acm.org/doi/abs/10.1145/3422622

DIAZ-PINTO, Andres et al. CNNs for automatic glaucoma assessment using fundus images: an extensive validation. Biomedical engineering online, v. 18, p. 1-19, 2019. Disponível em: https://link.springer.com/article/10.1186/s12938-019-0649-y

CARMONA, Enrique J. et al. Identification of the optic nerve head with genetic algorithms. Artificial intelligence in medicine, v. 43, n. 3, p. 243-259, 2008. Disponível em: https://www.sciencedirect.com/science/article/pii/S0933365708000547

SIVASWAMY, Jayanthi et al. Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE, 2014. p. 53-56. Disponível em: https://ieeexplore.ieee.org/abstract/document/6867807/

STAAL, Joes et al. Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging, v. 23, n. 4, p. 501-509, 2004. Disponível em: https://ieeexplore.ieee.org/abstract/document/1282003/

RAMANI, R. Geetha; SHANTHAMALAR, J. Jeslin. Improved image processing techniques for optic disc segmentation in retinal fundus images. Biomedical Signal Processing and Control, v. 58, p. 101832, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S1746809419304136

BUDAI, Attila et al. Robust vessel segmentation in fundus images. International journal of biomedical imaging, v. 2013, 2013. Disponível em: https://www.hindawi.com/journals/ijbi/2013/154860/abs/

ABBAS, Qaisar. Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning. International Journal of Advanced Computer Science and Applications, v. 8, n. 6, 2017. Disponível em: https://thesai.org/Publications/ViewPaper?Volume=8&Issue=6&Code=IJACSA&SerialNo=6

DECENCIÈRE, Etienne et al. Feedback on a publicly distributed image database: the Messidor database. Image Analysis & Stereology, v. 33, n. 3, p. 231-234, 2014. Disponível em: http://www.ias-iss.org/ojs/IAS/article/view/1155

ZHANG, Zhuo et al. Origa-light: An online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual international conference of the IEEE engineering in medicine and biology. IEEE, 2010. p. 3065-3068. Disponível em: https://ieeexplore.ieee.org/abstract/document/5626137/

KOVALYK, Oleksandr et al. PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. Scientific Data, v. 9, n. 1, p. 291, 2022. Disponível em: https://www.nature.com/articles/s41597-022-01388-1

ORLANDO, José Ignacio et al. Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical image analysis, v. 59, p. 101570, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S1361841519301100

BAJWA, Muhammad Naseer et al. G1020: A benchmark retinal fundus image dataset for computer-aided glaucoma detection. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. p. 1-7. Disponível em: https://ieeexplore.ieee.org/abstract/document/9207664/

BRAGANÇA, Clerimar Paulo et al. Detection of glaucoma on fundus images using deep learning on a new image set obtained with a smartphone and handheld ophthalmoscope. In: Healthcare. MDPI, 2022. p. 2345. Disponível em: https://www.mdpi.com/2227-9032/10/12/2345

BATISTA, Francisco José Fumero et al. Rim-one dl: A unified retinal image database for assessing glaucoma using deep learning. Image Analysis & Stereology, v. 39, n. 3, p. 161-167, 2020. Disponível em: https://ias-iss.org/ojs/IAS/article/view/2346

SEVASTOPOLSKY, Artem et al. Stack-u-net: Refinement network for image segmentation on the example of optic disc and cup. arXiv preprint arXiv:1804.11294, 2018. Disponível em: https://arxiv.org/abs/1804.11294

GUPTA, Neeraj; GARG, Hitendra; AGARWAL, Rohit. A robust framework for glaucoma detection using CLAHE and EfficientNet. The Visual Computer, p. 1-14, 2021. Disponível em: https://link.springer.com/article/10.1007/s00371-021-02114-5

SINGH, Law Kumar et al. An enhanced deep image model for glaucoma diagnosis using feature-based detection in retinal fundus. Medical & Biological Engineering & Computing, v. 59, p. 333-353, 2021. Disponível em: https://link.springer.com/article/10.1007/s11517-020-02307-5

SHINY CHRISTOBEL, J. et al. Effectiveness of Feature Extraction by PCA-Based Detection and Naive Bayes Classifier for Glaucoma Images. International Journal of Digital Multimedia Broadcasting, v. 2022, 2022. Disponível em: https://www.hindawi.com/journals/ijdmb/2022/4802872/

LI, Liu et al. A large-scale database and a CNN model for attention-based glaucoma detection. IEEE transactions on medical imaging, v. 39, n. 2, p. 413-424, 2019. Disponível em: https://ieeexplore.ieee.org/abstract/document/8756196/

TING, Daniel Shu Wei et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama, v. 318, n. 22, p. 2211-2223, 2017. Disponível em: https://jamanetwork.com/journals/jama/article-abstract/2665775

DIAZ-PINTO, Andres et al. CNNs for automatic glaucoma assessment using fundus images: an extensive validation. Biomedical engineering online, v. 18, p. 1-19, 2019. Disponível em: https://link.springer.com/article/10.1186/s12938-019-0649-y

SINGH, Vivek Kumar et al. Retinal Optic Disc Segmentation Using Conditional Generative Adversarial Network. 2018. Disponível em: https://arxiv.org/abs/1806.03905

CHANG, Chuan-Wang et al. A Glaucoma Detection System Based on Generative Adversarial Network and Incremental Learning. Applied Sciences, v. 13, n. 4, p. 2195, 2023. Disponível em: https://www.mdpi.com/2076-3417/13/4/2195

JAIN, Supiksha; INDORA, Sanjeev; ATAL, Dinesh Kumar. Rider manta ray foraging optimization-based generative adversarial network and CNN feature for detecting glaucoma. Biomedical Signal Processing and Control, v. 73, p. 103425, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S1746809421010223

SHINDE, Rutuja. Glaucoma detection in retinal fundus images using U-Net and supervised machine learning algorithms. Intelligence-Based Medicine, v. 5, p. 100038, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S2666521221000144

SRENG, Syna et al. Deep learning for optic disc segmentation and glaucoma diagnosis on retinal images. Applied Sciences, v. 10, n. 14, p. 4916, 2020. Disponível em: https://www.mdpi.com/2076-3417/10/14/4916

DOS SANTOS FERREIRA, Marcos Vinicius et al. Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma. Expert Systems with Applications, v. 110, p. 250-263, 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/S0957417418303567

PHENE, Sonia et al. Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs. Ophthalmology, v. 126, n. 12, p. 1627-1639, 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S0161642019318755

LEE, Eric Boya; WANG, Sophia Ying; CHANG, Robert T. Interpreting deep learning studies in glaucoma: unresolved challenges. The Asia-Pacific Journal of Ophthalmology, v. 10, n. 3, p. 261-267, 2021. Disponível em: https://journals.lww.com/apjoo/_layouts/15/oaks.journals/downloadpdf.aspx?an=01599573-202106000-00005

MARTINS, José; CARDOSO, Jaime S.; SOARES, Filipe. Offline computer-aided diagnosis for Glaucoma detection using fundus images targeted at mobile devices. Computer Methods and Programs in Biomedicine, v. 192, p. 105341, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0169260719312015

SHIBATA, Naoto et al. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Scientific reports, v. 8, n. 1, p. 14665, 2018. Disponível em: https://www.nature.com/articles/s41598-018-33013-w

CAMARA, José et al. Literature review on artificial intelligence methods for glaucoma screening, segmentation, and classification. Journal of Imaging, v. 8, n. 2, p. 19, 2022. Disponível em: https://www.mdpi.com/2313-433X/8/2/19

Published

2023-09-18

How to Cite

Bragança, C. . P., Torres, J. M., & Soares, C. P. de A. (2023). Inteligência artificial e diagnóstico do glaucoma. Brazilian Applied Science Review, 7(2), 683–707. https://doi.org/10.34115/basrv7n2-017b

Issue

Section

Artigos originais